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Label Noise: Overview
of the Literature



Label Noise: a Complex Phenomenon

Frénay, B., Verleysen, M. Classification in the Presence of Label Noise:
a Survey. IEEE TNN & LS, 25(5), 2014, p. 845-869.
Frénay, B., Kabán, A. A Comprehensive Introduction to Label Noise.
In Proc. ESANN, Bruges, Belgium, 23-25 April 2014, p. 667-676.
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Sources and Effects of Label Noise

Label noise can come from several sources
insufficient information provided to the expert
errors in the expert labelling itself
subjectivity of the labelling task
communication/encoding problems

Label noise can have several effects
decrease the classification performances
increase/decrease the complexity of learned models
pose a threat to tasks like e.g. feature selection
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State-of-the-Art Methods to Deal with Label Noise

label noise-robust models rely on overfitting avoidance
learning algorithms are seldom completely robust to label noise

data cleansing remove instances which seems to be mislabelled
mostly based on model predictions or kNN-based methods

label noise-tolerant learning algorithms take label noise into account
based on e.g. probabilistic models of label noise
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Label Noise-Robust Models

some losses are robust to uniform label noise (Manwani and Sastry)
theoretically robust: least-square loss → Fisher linear discriminant
theoretically non-robust: exponential loss → AdaBoost, log loss →
logistic regression, hinge loss → support vector machines

one can expect most of the recent learning algorithms in machine learning
to be completely label noise-robust ⇒ research on label noise matters!

robustness to label noise is method-specific
boosting: AdaBoost < LogitBoost / BrownBoost
decision trees: C4.5 < imprecise info-gain

there exist empirical comparisons in the literature, not easy to conclude
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Data Cleansing Methods

many methods to detect and remove mislabelled instances
measures and thresholds: model complexity, entropy of P(Y |X ). . .
model prediction-based: class probabilities, voting, partition filtering
model influence: LOO perturbed classification (LOOPC), CL-stability
kNN: CNN, RNN, BBNR, DROP1-6, GE, Tomek links, PRISM. . .
boosting: ORBoost exploits tendency of AdaBoost to overfit
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Label Noise-Tolerant Methods

6= label noise-robust ⇔ fight the effects of label noise
6= data cleansing methods ⇔ no filtering of instances

Bayesian priors and frequentist methods (e.g. Lawrence et al.)
clustering-based: structure of data (=clusters) to model label noise
belief functions: each instance seen as an evidence, used to robust
kNN classifiers, neural networks, decision trees, boosting
modification of SVMs, neural networks, decision trees, boosting. . .

8



Probabilistic Models
of Label Noise



Probabilistic Modelling of Lawrence et al.

pY = true labels Y prior

pX |Y = observed features X distribution

pỸ |Y = observed labels Ỹ distribution

Frénay, B., de Lannoy, G., Verleysen, M. Label noise-tolerant hidden Markov
models for segmentation: application to ECGs. ECML-PKDD 2011, p. 455-470.

Frénay, B., Doquire, G., Verleysen, M. Estimating mutual information for feature
selection in the presence of label noise. CS & DA, 71, 832-848, 2014.

Frenay, B., Hammer, B. Label-noise-tolerant classification for streaming data.
IJCNN 2017, Anchorage, AK, 14-19 May 2017, p. 1748-1755.

Bion, Q., Frénay, B. Modelling non-uniform label noise to robustify a classifier with
application to neural networks. Submitted to ESANN’18 (under review).
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HMMs for ECG
Segmentation



What is an Electrocardiogram Signal ?

an ECG is a measure of the electrical activity of the human heart

patterns of interest: P wave, QRS complex, T wave, baseline
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Where do ECG Signals Come from ?

an ECG results from the superposition of several signals
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What Real-World ECG Signals Look Like

real ECGs are polluted by various sources of noise
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Solving an ECG Segmentation Task

learn from a few manual segmentations from experts
split/segment the entire ECG into patterns
sequence modelling with hidden Markov Models (+ wavelet transform)
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Hidden Markov Models in a Nutshell

hidden Markov models (HMMs) are probabilistic models of sequences

S1, . . . ,ST is the sequence of annotations (ex.: state of the heart).

P(St = st |St−1 = st−1)

O1, . . . ,OT is the sequence of observations (ex.: measured voltage).

P(Ot = ot |St = st)
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Information Extraction with Wavelet Transform
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Standard Inference Algorithms for HMMs

Supervised learning
assumes the observed labels are correct
maximises the likelihood P(S ,O|Θ)

learns the correct concepts
sensitive to label noise

Baum-Welch algorithm
unsupervised, i.e. observed labels are discarded
iteratively (i) label samples and (ii) learn a model
may learn concepts which differs significantly
theoretically insensitive to label noise
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Example of Label Noise: Electrocardiogram Signals
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Label Noise Model

Modelling label noise in sequences

two distinct sequences of states:
the observed, noisy annotations Y
the hidden, true labels S

the annotation probability is

dij =

{
1− pi (i = j)

pi
|S|−1 (i 6= j)

where pi is the expert error probability in i
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Label Noise-Tolerant HMMs

Compromise between supervised learning and Baum-Welch
assumes the observed labels are potentially noisy
maximises the likelihood P(Y ,O|Θ) =

∑
S P(O,Y , S |Θ)

learns the correct concepts (and error probabilities)
less sensitive to label noise (can estimate label noise level)
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Results for Artificial ECGs

Supervised learning, Baum-Welch and label noise-tolerant.
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Results for Sinus ECGs

Supervised learning, Baum-Welch and label noise-tolerant.
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Resuts for Arrhythmia ECGs

Supervised learning, Baum-Welch and label noise-tolerant.
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Robust Feature Selection
with Mutual Information



Feature Selection with Mutual Information

Problem statement
problems with high-dimensional data:

interpretability of data
curse of dimensionality
concentration of distances

feature selection consists in using only a subset of the features

How to select features
mutual information (MI) assesses the quality of feature subsets:

rigorous definition (information theory)
interpretation in terms of uncertainty reduction
can detect linear as well as non-linear relationships
can be defined for multi-dimensional variables
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Label Noise-Tolerant Mutual Information Estimation

Gómez et al. propose to estimate MI (using the Kozachenko-Leonenko
kNN-based entropy estimator, a.k.a. the Kraskov estimator) as

Î (X ;Y ) = Ĥ(X )−
∑
y∈Y

pY (y)Ĥ(X |Y = y)

= ψ(n)− 1
n

∑
y∈Y

nyψ(ny ) +
d

n

 n∑
i=1

log εk(i)−
∑
y∈Y

∑
i |yi=y

log εk(i |y)

 ,
assumption: density remains constant in a small hypersphere of
diameter εk(i) containing the k nearest neighbours of the instance xi

Solution
find hyperspheres with expected number of k instances really belonging to
the target class s (with true class memberships, similar to Lawrence et al.)
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Experimental Results for Feature Selection

resulting estimate of MI is only Î (X ;Y ) = 0.58 instead of Î (X ;Y ) = 0.63
with clean data ⇒ label noise-tolerant estimation is Î (X ;Y ) = 0.61
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Experimental Results for Feature Selection

29



Dealing with Noisy
Streaming Data



Motivation for Robust Online Learning

Context
large scale ML = deal with large (batch) or infinite (streaming) datasets

online learning can deal with such datasets (see e.g. Botou’s works)

robust classification = deal with label noise in datasets
real-world datasets = ±5% labeling errors
use of low-quality labels (crowdsourcing)

Online learning with label noise
only few online-learning approaches related to perceptron

λ-trick modifies the adaptation criterion if previously misclassified
α-bound does not update the weights if already misclassified α times
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Prototype-based Models: Robust Soft LVQ

Motivation
easy-to-optimise, online learning, interpretable (controlled complexity)

RSLVQ relies on a data generating Gaussian mixture model (=prototypes)

p(x|j) :=
1

(2πσ2)
d
2
e
−‖x−wj‖

2

2σ2

where the bandwidth σ is considered to be identical for each component.

assuming equal prior P(j) = 1
k , (un)labelled instances follow

p(x) =
1
k

k∑
j=1

p(x|j) p(x, y) =
1
k

∑
j |c(wj )=y

p(x|j)

32



Prototype-based Models: Robust Soft LVQ

Motivation
easy-to-optimise, online learning, interpretable (controlled complexity)

RSLVQ relies on a data generating Gaussian mixture model (=prototypes)

p(x|j) :=
1

(2πσ2)
d
2
e
−‖x−wj‖

2

2σ2

where the bandwidth σ is considered to be identical for each component.

assuming equal prior P(j) = 1
k , (un)labelled instances follow

p(x) =
1
k

k∑
j=1

p(x|j) p(x, y) =
1
k

∑
j |c(wj )=y

p(x|j)

32



Prototype-based Models: Robust Soft LVQ

RSLVQ training = optimization of the conditional log likelihood

m∑
i=1

log p(yi |xi ) =
m∑
i=1

log
p(xi , yi )
p(xi )

gradient ascent to be used in streaming scenarios ⇒ update rule

∆wj =

{
α
σ2 (Pyi (j |xi )− P(j |xi )) (xi −wj) if c(wj) = yi

− α
σ2P(j |xi )(xi −wj) if c(wj) 6= yi

where

P(j |xi ) =
p(xi |j)∑k

j ′=1 p(xi |j ′)
Pyi (j |xi ) =

p(xi |j)∑
j ′|c(wj′ )=yi

p(xi |j ′)
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Label Noise-Tolerant RSLVQ

using Lawrence and Schölkopf methodology, RSLVQ equations become

p(x, y) =
∑
ỹ∈Y

P(y |ỹ)

1
k

∑
j |c(wj )=ỹ

p(x|j)

 =
1
k

k∑
j=1

P(y |c(wj))p(x|j)

where P(y |c(wj)) = probability of observing label y if true label is c(wj)

online update rules become

∀j ∈ 1 . . .m : ∆wj =
α

σ2 (Pyi (j |xi )− P(j |xi )) (xi −wj)

where

P(j |xi ) =
p(xi |j)∑k

j ′=1 p(xi |j ′)
Pyi (j |xi ) =

P(yi |c(wj))p(xi |j)∑k
j ′=1 P(yi |c(wj ′))p(xi |j ′)
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p(x|j)

 =
1
k

k∑
j=1

P(y |c(wj))p(x|j)

where P(y |c(wj)) = probability of observing label y if true label is c(wj)

online update rules become

∀j ∈ 1 . . .m : ∆wj =
α

σ2 (Pyi (j |xi )− P(j |xi )) (xi −wj)

where

P(j |xi ) =
p(xi |j)∑k

j ′=1 p(xi |j ′)
Pyi (j |xi ) =

P(yi |c(wj))p(xi |j)∑k
j ′=1 P(yi |c(wj ′))p(xi |j ′)

34



Results in batch setting
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Results in batch setting
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Results in streaming setting
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Results in streaming setting
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Going Further
with Modelling



Statistical Taxonomy of Label Noise (inspired by Schafer)

most works consider that label noise affects instances with no distinction
in specific cases, empirical evidence was given that more difficult
samples are labelled randomly (e.g. in text entailment)
it seems natural to expect less reliable labels in regions of low density
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Non-uniform Label Noise in the Literature

Lachenbruch/Chhikara models of label noise
probability of misallocation gy (z) for LDA is defined w.r.t a z-axis which
passes through the center of both classes s.t. each center is at z = ±∆

2

random misallocation: gy (z) = αy is constant for each class
truncated label noise: g(z) is zero as long as the instance is close
enough to the mean of its class, then equal to a small constant
exponential model:

gy (z) =

{
0 if z ≤ −∆

2

1− exp
(
−1

2ky (z + ∆
2 )2) if z > −∆

2
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Non-uniform Label Noise in the Literature

non-uniform label noise is considered in much less works
experiments rely on simple models (e.g. Lachenbruch/Chhikara’s or
Sastry’s quadrant-dependent probability of mislabelling)
there are (up to our knowledge) almost no empirical evidences/studies
on the characteristics of real non-uniform label noise

Call for discussions
It would be very interesting to obtain more real-world datasets where
mislabelled instances are clearly identified. Also, an important open
research problem is to find what the characteristics of real-world label noise
are. It is not yet clear if and when (non-)uniform label noise is realistic.
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What if Label Noise ⊥ Classification Task?

Work in Progress
Quentin Bion, a student from Nancy (École des Mines, Ing. Mathématique)
made an internship in our lab and worked on non-uniform label noise

results have been submitted to the ESANN’18 conference
he studied how to combine simple non-uniform models of label noise
with complex classification models using generic mechanisms
gain = power of up-to-date classifiers + interpretability/transparency
of simple non-uniform models of label noise = best of both worlds
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Robust Maximum
Likelihood Inference



What is the common point of. . .

linear regression
LS-SVMs
logistic regression
principal component analysis

Answer
common methods in machine learning
can interpreted in probabilistic terms
sensitive to outliers (but can be robustified)
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Everything Wrong with Maximum Likelihood Inference

What is maximum likelihood inference?
maximise loglikelihood L (θ; x) = log p(x1, .., xn) =

∑n
i=1 log p (xi |θ)

minimise KL divergence of empirical vs. parametric distribution

DKL (empirical distr.‖parametric distr.) = −
n∑

i=1

log p (xi |θ) + const.

Why is it sensitive to outliers?
abnormally frequent data / outliers = too frequent observations

the reference distribution in DKL is the empirical one
inference is biased towards models supporting outliers
otherwise, DKL is too large because of low probability for outliers
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Pointwise Probability Reinforcements

Idea: provide an alternative to deal with outliers
good distributions cannot explain outliers ⇒ low probability

consequence: not-so-good distributions are enforced
our solution: provide another mechanism to deal with outliers

Reinforced loglikelihood
xi is given a PPR r(xi ) ≥ 0 as reinforcement to the probability p (xi |θ)

L (θ; x, r) =
n∑

i=1

log [p (xi |θ) + r(xi )]

reinforced maximum likelihood inference:
PPRs r(xi ) ≈ 0 if xi = clean ⇒ xi impacts the inference of θ̂
PPRs r(xi )� 0 if xi = outlier ⇒ xi ignored by inference of θ̂
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Control of PPRS through Regularisation

Keeping the PPRs under Control
PPRs cannot be allowed to take any arbitrary positive values

non-parametric approach: reinforcement r(xi ) = ri for each xi

LΩ (θ;X, r) =
n∑

i=1

log [p (xi |θ) + ri ]− αΩ(r)

no prior knowledge on outliers (e.g. uniform distribution of outliers or
mislabelling probability w.r.t. distance to the classification boundary)
Ω(r) = penalisation term (e.g. to allow only a few non-zero PPRs)
α = focus on fitting the model vs. considering data as outliers

48



Control of PPRS through Regularisation

Keeping the PPRs under Control
PPRs cannot be allowed to take any arbitrary positive values

non-parametric approach: reinforcement r(xi ) = ri for each xi

LΩ (θ;X, r) =
n∑

i=1

log [p (xi |θ) + ri ]− αΩ(r)

no prior knowledge on outliers (e.g. uniform distribution of outliers or
mislabelling probability w.r.t. distance to the classification boundary)
Ω(r) = penalisation term (e.g. to allow only a few non-zero PPRs)
α = focus on fitting the model vs. considering data as outliers

48



Control of PPRS through Regularisation

Keeping the PPRs under Control
PPRs cannot be allowed to take any arbitrary positive values

non-parametric approach: reinforcement r(xi ) = ri for each xi

LΩ (θ;X, r) =
n∑

i=1

log [p (xi |θ) + ri ]− αΩ(r)

no prior knowledge on outliers (e.g. uniform distribution of outliers or
mislabelling probability w.r.t. distance to the classification boundary)
Ω(r) = penalisation term (e.g. to allow only a few non-zero PPRs)
α = focus on fitting the model vs. considering data as outliers

48



Control of PPRS through Regularisation

Keeping the PPRs under Control
PPRs cannot be allowed to take any arbitrary positive values

non-parametric approach: reinforcement r(xi ) = ri for each xi

LΩ (θ;X, r) =
n∑

i=1

log [p (xi |θ) + ri ]− αΩ(r)

no prior knowledge on outliers (e.g. uniform distribution of outliers or
mislabelling probability w.r.t. distance to the classification boundary)
Ω(r) = penalisation term (e.g. to allow only a few non-zero PPRs)
α = focus on fitting the model vs. considering data as outliers

48



Control of PPRS through Regularisation

theoretical guarantees and closed form expressions exist for some Ω(r)
L1 penalisation Ω (r) =

∑n
i=1 ri shrinks (sparse) PPRs towards zero

L2 regularisation Ω (r) = 1
2
∑n

i=1 r
2
i provides smoother solutions

all details in Frénay, B., Verleysen, M. Pointwise Probability Reinforcements
for Robust Statistical Inference. Neural networks, 50, 124-141, 2014. short
version: "Robustifying Maximum Likelihood Inference" at BENELEARN’16.49
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for Robust Statistical Inference. Neural networks, 50, 124-141, 2014. short
version: "Robustifying Maximum Likelihood Inference" at BENELEARN’16.49



Iterative Method for Reinforced Inference

no closed-form solution for penalised reinforced log-likelihood. . . but

n∑
i=1

log [p (xi |θ) + ri ] ≥
n∑

i=1

wi log p (xi |θ) + const.

where θold = current estimate and wi = p
(
xi |θold) /p (xi |θold)+ ri

EM-like algorithm
initialise θ, then loop over

1 compute PPRs with L1 or L2 regularisation ⇒ model-independent
2 compute instance weights with PPRs ⇒ model-independent
3 maximise weighted log-likelihood to update θ ⇒ model-specific
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Illustration: Linear Regression / OLS
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Illustration: LS-SVMs

comparison to Suykens et al. (2002) on 22 datasets ⇒ see full paper
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Illustration: LS-SVMs

comparison to Suykens et al. (2002) on 22 datasets ⇒ see full paper
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Illustration: Logistic Regression
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Illustration: Principal Component Analysis
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Conclusion



Take Home Messages

Probabilistic approaches
probabilistic modelling of label noise is a powerful approach

easily plugged in various problems/models
can be used to provide feedback to users
can embed prior knowledge on label noise

Pointwise probability reinforcements
generic approach to robustify maximum likelihood inference

many models can be formulated in probabilistic terms
no parametric assumption → could deal with non-uniform noise
easy to implement if weights can be enforced on instances
further work: more complex models + noise level estimation

try on your own favorite probabilistic model (and let us know! )
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