Tell me What Label Noise is and I will Tell you how to Dispose of it

Benoît Frénay - Namur Digital Institute PReCISE research center - UNamur

Outline of this Talk

- label noise: overview of the literature
- probabilistic models for label noise
 - HMMs for ECG segmentation
 - robust feature selection with MI
 - dealing with streaming data
 - going further with modelling
- robust maximum likelihood inference

Label Noise: Overview of the Literature

Label Noise: a Complex Phenomenon

- Frénay, B., Verleysen, M. Classification in the Presence of Label Noise: a Survey. IEEE TNN & LS, 25(5), 2014, p. 845-869.
- Frénay, B., Kabán, A. A Comprehensive Introduction to Label Noise. In Proc. ESANN, Bruges, Belgium, 23-25 April 2014, p. 667-676.

Label noise can come from several sources

- insufficient information provided to the expert
- errors in the expert labelling itself
- subjectivity of the labelling task
- communication/encoding problems

Label noise can have several effects

- decrease the classification performances
- increase/decrease the complexity of learned models
- pose a threat to tasks like e.g. feature selection

label noise-robust models rely on overfitting avoidance

· learning algorithms are seldom completely robust to label noise

data cleansing remove instances which seems to be mislabelled
mostly based on model predictions or kNN-based methods

label noise-tolerant learning algorithms take label noise into accountbased on e.g. probabilistic models of label noise

some losses are robust to uniform label noise (Manwani and Sastry)

- $\bullet\,$ theoretically robust: least-square loss $\rightarrow\,$ Fisher linear discriminant
- theoretically non-robust: exponential loss \rightarrow AdaBoost, log loss \rightarrow logistic regression, hinge loss \rightarrow support vector machines

one can expect most of the recent learning algorithms in machine learning to be completely label noise-robust \Rightarrow research on label noise matters!

robustness to label noise is method-specific

- boosting: AdaBoost < LogitBoost / BrownBoost</p>
- decision trees: C4.5 < imprecise info-gain

there exist empirical comparisons in the literature, not easy to conclude

some losses are robust to uniform label noise (Manwani and Sastry)

- $\bullet\,$ theoretically robust: least-square loss $\rightarrow\,$ Fisher linear discriminant
- theoretically non-robust: exponential loss \rightarrow AdaBoost, log loss \rightarrow logistic regression, hinge loss \rightarrow support vector machines

one can expect most of the recent learning algorithms in machine learning to be completely label noise-robust \Rightarrow research on label noise matters!

robustness to label noise is method-specific

- \bullet boosting: AdaBoost < LogitBoost / BrownBoost
- decision trees: C4.5 < imprecise info-gain

there exist empirical comparisons in the literature, not easy to conclude

many methods to detect and remove mislabelled instances

- measures and thresholds: model complexity, entropy of P(Y|X)...
- model prediction-based: class probabilities, voting, partition filtering
- model influence: LOO perturbed classification (LOOPC), CL-stability
- kNN: CNN, RNN, BBNR, DROP1-6, GE, Tomek links, PRISM...
- boosting: ORBoost exploits tendency of AdaBoost to overfit

Label Noise-Tolerant Methods

- \neq label noise-robust \Leftrightarrow fight the effects of label noise
- \neq data cleansing methods \Leftrightarrow no filtering of instances

- Bayesian priors and frequentist methods (e.g. Lawrence et al.)
- clustering-based: structure of data (=clusters) to model label noise
- belief functions: each instance seen as an evidence, used to robust kNN classifiers, neural networks, decision trees, boosting
- modification of SVMs, neural networks, decision trees, boosting...

Probabilistic Models of Label Noise

Probabilistic Modelling of Lawrence et al.

 p_Y = true labels Y prior

 $p_{X|Y}$ = observed features X distribution

 $p_{\tilde{Y}|Y}$ = observed labels \tilde{Y} distribution

- Frénay, B., de Lannoy, G., Verleysen, M. Label noise-tolerant hidden Markov models for segmentation: application to ECGs. ECML-PKDD 2011, p. 455-470.
- Frénay, B., Doquire, G., Verleysen, M. Estimating mutual information for feature selection in the presence of label noise. CS & DA, 71, 832-848, 2014.
- Frenay, B., Hammer, B. Label-noise-tolerant classification for streaming data. IJCNN 2017, Anchorage, AK, 14-19 May 2017, p. 1748-1755.
- Bion, Q., Frénay, B. Modelling non-uniform label noise to robustify a classifier with application to neural networks. Submitted to ESANN'18 (under review).

HMMs for ECG Segmentation

What is an Electrocardiogram Signal ?

an ECG is a measure of the electrical activity of the human heart

patterns of interest: P wave, QRS complex, T wave, baseline

Where do ECG Signals Come from ?

an ECG results from the superposition of several signals

What Real-World ECG Signals Look Like

real ECGs are polluted by various sources of noise

Solving an ECG Segmentation Task

- learn from a few manual segmentations from experts
- split/segment the entire ECG into patterns
- sequence modelling with hidden Markov Models (+ wavelet transform)

Hidden Markov Models in a Nutshell

hidden Markov models (HMMs) are probabilistic models of sequences

 S_1, \ldots, S_T is the sequence of annotations (ex.: state of the heart).

$$P(S_t = s_t | S_{t-1} = s_{t-1})$$

 O_1, \ldots, O_T is the sequence of **observations** (ex.: measured voltage).

$$P(O_t = o_t | S_t = s_t)$$

Hidden Markov Models in a Nutshell

hidden Markov models (HMMs) are probabilistic models of sequences

 S_1, \ldots, S_T is the sequence of **annotations** (ex.: state of the heart).

$$P(S_t = s_t | S_{t-1} = s_{t-1})$$

 O_1,\ldots,O_T is the sequence of **observations** (ex.: measured voltage).

$$P(O_t = o_t | S_t = s_t)$$

Hidden Markov Models in a Nutshell

hidden Markov models (HMMs) are probabilistic models of sequences

 S_1, \ldots, S_T is the sequence of **annotations** (ex.: state of the heart).

$$P(S_t = s_t | S_{t-1} = s_{t-1})$$

 O_1, \ldots, O_T is the sequence of observations (ex.: measured voltage).

$$P(O_t = o_t | S_t = s_t)$$

Information Extraction with Wavelet Transform

Standard Inference Algorithms for HMMs

Supervised learning

- assumes the observed labels are correct
- maximises the likelihood $P(S, O|\Theta)$
- learns the correct concepts
- sensitive to label noise

Baum-Welch algorithm

- unsupervised, i.e. observed labels are discarded
- iteratively (i) label samples and (ii) learn a model
- may learn concepts which differs significantly
- theoretically insensitive to label noise

Example of Label Noise: Electrocardiogram Signals

Modelling label noise in sequences

two distinct sequences of states:

- the observed, noisy annotations Y
- the hidden, true labels S

the annotation probability is

$$d_{ij} = \begin{cases} 1 - p_i & (i = j) \\ \frac{p_i}{|\mathcal{S}| - 1} & (i \neq j) \end{cases}$$

where p_i is the expert error probability in i

Label Noise-Tolerant HMMs

Compromise between supervised learning and Baum-Welch

- assumes the observed labels are potentially noisy
- maximises the likelihood $P(Y, O|\Theta) = \sum_{S} P(O, Y, S|\Theta)$
- learns the correct concepts (and error probabilities)
- less sensitive to label noise (can estimate label noise level)

Supervised learning, Baum-Welch and label noise-tolerant.

Supervised learning, Baum-Welch and label noise-tolerant.

Resuts for Arrhythmia ECGs

Supervised learning, Baum-Welch and label noise-tolerant.

Robust Feature Selection with Mutual Information

Feature Selection with Mutual Information

Problem statement

problems with high-dimensional data:

- interpretability of data
- curse of dimensionality
- concentration of distances

feature selection consists in using only a subset of the features

How to select features

mutual information (MI) assesses the quality of feature subsets:

- rigorous definition (information theory)
- interpretation in terms of uncertainty reduction
- can detect linear as well as non-linear relationships
- can be defined for multi-dimensional variables

Feature Selection with Mutual Information

Problem statement

problems with high-dimensional data:

- interpretability of data
- curse of dimensionality
- concentration of distances

feature selection consists in using only a subset of the features

How to select features

mutual information (MI) assesses the quality of feature subsets:

- rigorous definition (information theory)
- interpretation in terms of uncertainty reduction
- can detect linear as well as non-linear relationships
- can be defined for multi-dimensional variables

Label Noise-Tolerant Mutual Information Estimation

Gómez et al. propose to estimate MI (using the Kozachenko-Leonenko kNN-based entropy estimator, a.k.a. the Kraskov estimator) as

$$\hat{l}(X;Y) = \hat{H}(X) - \sum_{y \in \mathcal{Y}} p_Y(y) \hat{H}(X|Y=y)$$
$$= \psi(n) - \frac{1}{n} \sum_{y \in \mathcal{Y}} n_y \psi(n_y) + \frac{d}{n} \left[\sum_{i=1}^n \log \epsilon_k(i) - \sum_{y \in \mathcal{Y}} \sum_{i|y_i=y} \log \epsilon_k(i|y) \right]$$

 assumption: density remains constant in a small hypersphere of diameter ε_k(i) containing the k nearest neighbours of the instance x_i

Solution

find hyperspheres with expected number of k instances really belonging to the target class s (with true class memberships, similar to Lawrence et al.)

Label Noise-Tolerant Mutual Information Estimation

Gómez et al. propose to estimate MI (using the Kozachenko-Leonenko kNN-based entropy estimator, a.k.a. the Kraskov estimator) as

$$\hat{l}(X;Y) = \hat{H}(X) - \sum_{y \in \mathcal{Y}} p_Y(y) \hat{H}(X|Y=y)$$
$$= \psi(n) - \frac{1}{n} \sum_{y \in \mathcal{Y}} n_y \psi(n_y) + \frac{d}{n} \left[\sum_{i=1}^n \log \epsilon_k(i) - \sum_{y \in \mathcal{Y}} \sum_{i|y_i=y} \log \epsilon_k(i|y) \right]$$

 assumption: density remains constant in a small hypersphere of diameter \(\epsilon_k(i)\) containing the k nearest neighbours of the instance \(x_i\)

Solution

find hyperspheres with expected number of k instances really belonging to the target class s (with true class memberships, similar to Lawrence et al.)

Experimental Results for Feature Selection

resulting estimate of MI is only $\hat{I}(X; Y) = 0.58$ instead of $\hat{I}(X; Y) = 0.63$ with clean data \Rightarrow label noise-tolerant estimation is $\hat{I}(X; Y) = 0.61$

Experimental Results for Feature Selection

resulting estimate of MI is only $\hat{I}(X; Y) = 0.58$ instead of $\hat{I}(X; Y) = 0.63$ with clean data \Rightarrow label noise-tolerant estimation is $\hat{I}(X; Y) = 0.61$

Experimental Results for Feature Selection

Dealing with Noisy Streaming Data

Context

large scale ML = deal with large (batch) or infinite (streaming) datasets

• online learning can deal with such datasets (see e.g. Botou's works)

robust classification = deal with label noise in datasets

- real-world datasets = $\pm 5\%$ labeling errors
- use of low-quality labels (crowdsourcing)

Online learning with label noise

only few online-learning approaches related to perceptron

- λ -trick modifies the adaptation criterion if previously misclassified
- ullet lpha-bound does not update the weights if already misclassified lpha times

Context

large scale ML = deal with large (batch) or infinite (streaming) datasets

• online learning can deal with such datasets (see e.g. Botou's works)

robust classification = deal with label noise in datasets

- real-world datasets = $\pm 5\%$ labeling errors
- use of low-quality labels (crowdsourcing)

Online learning with label noise

only few online-learning approaches related to perceptron

- λ -trick modifies the adaptation criterion if previously misclassified
- $\bullet \,$ $\alpha \text{-bound}$ does not update the weights if already misclassified α times

Motivation

easy-to-optimise, online learning, interpretable (controlled complexity)

RSLVQ relies on a data generating Gaussian mixture model (=prototypes)

$$p(\mathbf{x}|j) := \frac{1}{(2\pi\sigma^2)^{\frac{d}{2}}} e^{\frac{-\|\mathbf{x}-\mathbf{w}_j\|^2}{2\sigma^2}}$$

where the bandwidth σ is considered to be identical for each component.

assuming equal prior $P(j) = rac{1}{k}$, (un)labelled instances follow

$$p(\mathbf{x}) = \frac{1}{k} \sum_{j=1}^{k} p(\mathbf{x}|j) \qquad p(\mathbf{x}, y) = \frac{1}{k} \sum_{j|c(\mathbf{w}_j)=y} p(\mathbf{x}|j)$$

Motivation

easy-to-optimise, online learning, interpretable (controlled complexity)

RSLVQ relies on a data generating Gaussian mixture model (=prototypes)

$$p(\mathbf{x}|j) := \frac{1}{(2\pi\sigma^2)^{\frac{d}{2}}} e^{\frac{-\|\mathbf{x}-\mathbf{w}_j\|^2}{2\sigma^2}}$$

where the bandwidth σ is considered to be identical for each component.

assuming equal prior $P(j) = \frac{1}{k}$, (un)labelled instances follow

$$p(\mathbf{x}) = \frac{1}{k} \sum_{j=1}^{k} p(\mathbf{x}|j) \qquad p(\mathbf{x}, y) = \frac{1}{k} \sum_{j|c(\mathbf{w}_j)=y} p(\mathbf{x}|j)$$

 RSLVQ training = optimization of the conditional log likelihood

$$\sum_{i=1}^{m} \log p(y_i | \mathbf{x}_i) = \sum_{i=1}^{m} \log \frac{p(\mathbf{x}_i, y_i)}{p(\mathbf{x}_i)}$$

gradient ascent to be used in streaming scenarios \Rightarrow update rule

$$\Delta \mathbf{w}_{j} = \begin{cases} \frac{\alpha}{\sigma^{2}} \left(P_{y_{i}}(j|\mathbf{x}_{i}) - P(j|\mathbf{x}_{i}) \right) \left(\mathbf{x}_{i} - \mathbf{w}_{j} \right) & \text{if } c(\mathbf{w}_{j}) = y_{i} \\ -\frac{\alpha}{\sigma^{2}} P(j|\mathbf{x}_{i}) \left(\mathbf{x}_{i} - \mathbf{w}_{j} \right) & \text{if } c(\mathbf{w}_{j}) \neq y_{i} \end{cases}$$

$$P(j|\mathbf{x}_{i}) = \frac{p(\mathbf{x}_{i}|j)}{\sum_{j'=1}^{k} p(\mathbf{x}_{i}|j')} \qquad P_{y_{i}}(j|\mathbf{x}_{i}) = \frac{p(\mathbf{x}_{i}|j)}{\sum_{j'|c(\mathbf{w}_{j'})=y_{i}} p(\mathbf{x}_{i}|j')}$$

RSLVQ training = optimization of the conditional log likelihood

$$\sum_{i=1}^m \log p(y_i | \mathbf{x}_i) = \sum_{i=1}^m \log \frac{p(\mathbf{x}_i, y_i)}{p(\mathbf{x}_i)}$$

gradient ascent to be used in streaming scenarios \Rightarrow update rule

$$\Delta \mathbf{w}_{j} = \begin{cases} \frac{\alpha}{\sigma^{2}} \left(P_{y_{i}}(j|\mathbf{x}_{i}) - P(j|\mathbf{x}_{i}) \right) \left(\mathbf{x}_{i} - \mathbf{w}_{j} \right) \text{ if } c(\mathbf{w}_{j}) = y_{i} \\ -\frac{\alpha}{\sigma^{2}} P(j|\mathbf{x}_{i}) \left(\mathbf{x}_{i} - \mathbf{w}_{j} \right) & \text{ if } c(\mathbf{w}_{j}) \neq y_{i} \end{cases}$$

$$P(j|\mathbf{x}_i) = \frac{p(\mathbf{x}_i|j)}{\sum_{j'=1}^k p(\mathbf{x}_i|j')} \qquad P_{y_i}(j|\mathbf{x}_i) = \frac{p(\mathbf{x}_i|j)}{\sum_{j'|c(\mathbf{w}_{j'})=y_i} p(\mathbf{x}_i|j')}$$

Label Noise-Tolerant RSLVQ

using Lawrence and Schölkopf methodology, RSLVQ equations become

$$p(\mathbf{x}, y) = \sum_{\tilde{y} \in \mathcal{Y}} P(y|\tilde{y}) \left[\frac{1}{k} \sum_{j|c(\mathbf{w}_j) = \tilde{y}} p(\mathbf{x}|j) \right] = \frac{1}{k} \sum_{j=1}^k P(y|c(\mathbf{w}_j)) p(\mathbf{x}|j)$$

where $P(y|c(\mathbf{w}_j)) =$ probability of observing label y if true label is $c(\mathbf{w}_j)$

online update rules become

$$\forall j \in 1 \dots m : \Delta w_j = \frac{\alpha}{\sigma^2} \left(P_{y_i}(j|\mathbf{x}_i) - P(j|\mathbf{x}_i) \right) \left(\mathbf{x}_i - w_j \right)$$

$$P(j|\mathbf{x}_{i}) = \frac{p(\mathbf{x}_{i}|j)}{\sum_{j'=1}^{k} p(\mathbf{x}_{i}|j')} \qquad P_{y_{i}}(j|\mathbf{x}_{i}) = \frac{P(y_{i}|c(\mathbf{w}_{j}))p(\mathbf{x}_{i}|j)}{\sum_{j'=1}^{k} P(y_{i}|c(\mathbf{w}_{j'}))p(\mathbf{x}_{i}|j')}$$

Label Noise-Tolerant RSLVQ

using Lawrence and Schölkopf methodology, RSLVQ equations become

$$p(\mathbf{x}, y) = \sum_{\tilde{y} \in \mathcal{Y}} P(y|\tilde{y}) \left[\frac{1}{k} \sum_{j|c(\mathbf{w}_j) = \tilde{y}} p(\mathbf{x}|j) \right] = \frac{1}{k} \sum_{j=1}^k P(y|c(\mathbf{w}_j)) p(\mathbf{x}|j)$$

where $P(y|c(\mathbf{w}_j)) =$ probability of observing label y if true label is $c(\mathbf{w}_j)$

online update rules become

$$\forall j \in 1 \dots m : \Delta w_j = rac{lpha}{\sigma^2} \left(P_{y_i}(j | \mathbf{x}_i) - P(j | \mathbf{x}_i)
ight) (\mathbf{x}_i - w_j)$$

$$P(j|\mathbf{x}_i) = \frac{p(\mathbf{x}_i|j)}{\sum_{j'=1}^k p(\mathbf{x}_i|j')} \qquad P_{y_i}(j|\mathbf{x}_i) = \frac{P(y_i|c(\mathbf{w}_j))p(\mathbf{x}_i|j)}{\sum_{j'=1}^k P(y_i|c(\mathbf{w}_{j'}))p(\mathbf{x}_i|j')}$$

Results in batch setting

Results in batch setting

name	10% of label noise			20% of noise of noise		
	RSLVQ	LNT	p-value	RSLVQ	LNT	p-value
Bupa	66.50	68.43	0.00	63.76	65.06	0.09
Haberman	72.64	73.91	0.03	70.35	73.02	0.00
Ionosphere	81.67	86.41	0.00	76.05	82.38	0.00
Mammographis	81.65	81.76	0.75	80.28	80.87	0.13
Optdigits	94.81	99.69	0.00	90.97	99.60	0.00
Parkinsons	79.40	80.55	0.20	71.67	77.22	0.00
Pima	73.88	73.83	0.90	71.50	72.44	0.04
Sonar	73.19	77.39	0.00	65.05	73.73	0.00
Votes	89.49	94.09	0.00	85.24	92.04	0.00
Wdbc	90.02	96.06	0.00	86.02	95.14	0.00
Iris	94.42	94.98	0.26	90.60	94.02	0.00
Glass	71.00	74.88	0.00	67.81	73.90	0.00
Wine	87.08	96.72	0.00	78.15	95.19	0.00
Vertebral	78.99	81.03	0.00	75.66	79.60	0.00
Vehicle	77.93	77.64	0.47	75.14	75.15	0.99
Ecoli	81.63	84.07	0.00	78.43	83.23	0.00
Breast tissue	59.90	60.65	0.56	54.65	59.61	0.00

Results in streaming setting

Results in streaming setting

	10% of label noise		20% of lab	el noise	10% of label noise	
name	RSLVQ	LNT	RSLVQ	LNT	RSLVQ	LNT
Bupa	68.3 (3.5)	70.1 (2.6)	66.6 (4.2)	69.6 (2.6)	67.2 (3.7)	69.7 (2.3)
Haberman	73.0 (1.9)	74.7(0.7)	71.8 (2.5)	74.5(0.8)	72.6 (1.9)	74.5 (0.7)
Ionosphere	85.8 (3.9)	87.2(0.5)	79.9 (7.4)	87.3(0.4)	85.7 (3.8)	87.5 (0.4)
Mammo.	81.3 (2.0)	81.3(0.4)	78.1 (4.7)	81.5 (0.4)	80.8 (2.0)	81.6 (0.5)
Optdigits	95.6 (2.8)	99.7 (0.0)	87.3 (7.4)	99.7 (0.0)	95.9 (3.0)	99.7 (0.0)
Parkinsons	87.3 (3.8)	77.3(1.2)	83.2 (7.3)	80.4(1.2)	88.2 (3.6)	83.3(1.2)
Pima	73.1 (2.6)	76.1(1.1)	71.5 (3.2)	75.6 (1.2)	73.3 (2.5)	75.6 (1.1)
Sonar	77.8 (4.8)	80.9 (1.4)	72.3 (6.9)	81.2 (1.0)	77.3 (4.6)	81.4 (0.9)
Votes	94.1 (1.6)	92.5(0.5)	91.1 (3.9)	93.5 (0.3)	94.8 (1.4)	94.1(0.4)
Wdbc	87.4 (4.0)	94.3 (0.2)	83.8 (8.0)	94.7 (0.1)	91.1 (3.3)	94.9 (0.2)
Iris	91.4 (3.4)	95.2 (0.4)	93.1 (3.3)	95.2 (0.4)	95.7 (1.6)	95.2(0.4)
Glass	74.4 (3.8)	76.4(2.5)	70.0 (4.9)	76.5(2.0)	72.8 (3.5)	76.8(1.9)
Wine	96.1 (1.9)	97.3 (0.2)	93.6 (3.4)	97.4 (0.1)	96.4 (1.9)	97.4 (0.1)
Vertebral	81.4 (2.6)	79.2(1.0)	79.6 (3.7)	79.6(0.9)	81.7 (2.5)	80.4(1.1)
Waveform	82.5 (1.4)	85.6 (0.5)	78.1 (2.3)	85.6 (0.4)	81.9 (1.4)	85.5 (0.4)
Vehicle	76.8 (2.7)	69.0(2.2)	75.8 (3.5)	73.9(2.0)	77.9 (2.8)	76.5(2.0)
Wall robot	74.9 (1.8)	74.5(1.4)	74.0 (2.3)	77.4 (0.7)	77.3 (1.7)	78.7 (0.7)
Ecoli	83.0 (2.0)	84.9(0.6)	82.9 (2.4)	84.7 (0.4)	85.7 (1.7)	84.9(0.4)
Breast tissue	37.0 (2.1)	61.4 (1.2)	35.4 (2.3)	61.7 (0.9)	35.5 (2.0)	61.7 (0.7)
			'			
	Projectron++	LNT	Projectron++	LNT	Projectron++	LNT
a9a	73.4 (9.4)	81.7 (0.7)	68.0 (16.2)	83.1 (0.2)	73.7 (8.8)	83.7 (0.2)
IJCNN1	83.0 (4.6)	90.9 (0.2)	76.0 (5.7)	90.8 (0.2)	82.1 (3.9)	91.4 (0.2)
MNIST	83.3 (3.5)	82.8(0.2)	74.4 (4.3)	83.4 (0.1)	82.3 (3.1)	83.9 (0.1)

Going Further with Modelling

Statistical Taxonomy of Label Noise (inspired by Schafer)

most works consider that label noise affects instances with no distinction

- in specific cases, empirical evidence was given that more difficult samples are labelled randomly (e.g. in text entailment)
- it seems natural to expect less reliable labels in regions of low density

Lachenbruch/Chhikara models of label noise

probability of misallocation $g_y(z)$ for LDA is defined w.r.t a z-axis which passes through the center of both classes s.t. each center is at $z = \pm \frac{\Delta}{2}$

- random misallocation: $g_y(z) = \alpha_y$ is constant for each class
- truncated label noise: g(z) is zero as long as the instance is close enough to the mean of its class, then equal to a small constant
- exponential model:

$$g_y(z) = \begin{cases} 0 & \text{if } z \leq -\frac{\Delta}{2} \\ 1 - \exp\left(-\frac{1}{2}k_y(z + \frac{\Delta}{2})^2\right) & \text{if } z > -\frac{\Delta}{2} \end{cases}$$

non-uniform label noise is considered in much less works

- experiments rely on simple models (e.g. Lachenbruch/Chhikara's or Sastry's quadrant-dependent probability of mislabelling)
- there are (up to our knowledge) almost no empirical evidences/studies on the characteristics of real non-uniform label noise

Call for discussions

It would be very interesting to obtain more real-world datasets where mislabelled instances are clearly identified. Also, an important open research problem is to find what the characteristics of real-world label noise are. It is not yet clear if and when (non-)uniform label noise is realistic. non-uniform label noise is considered in much less works

- experiments rely on simple models (e.g. Lachenbruch/Chhikara's or Sastry's quadrant-dependent probability of mislabelling)
- there are (up to our knowledge) almost no empirical evidences/studies on the characteristics of real non-uniform label noise

Call for discussions

It would be very interesting to obtain more real-world datasets where mislabelled instances are clearly identified. Also, an important open research problem is to find what the characteristics of real-world label noise are. It is not yet clear if and when (non-)uniform label noise is realistic.

Work in Progress

Quentin Bion, a student from Nancy (École des Mines, Ing. Mathématique) made an internship in our lab and worked on non-uniform label noise

- results have been submitted to the ESANN'18 conference
- he studied how to combine simple non-uniform models of label noise with complex classification models using generic mechanisms
- gain = power of up-to-date classifiers + interpretability/transparency of simple non-uniform models of label noise = best of both worlds

Robust Maximum Likelihood Inference

- linear regression
- LS-SVMs
- logistic regression
- principal component analysis

- common methods in machine learning
- can interpreted in probabilistic terms
- sensitive to outliers (but can be robustified)

• linear regression

- LS-SVMs
- logistic regression
- principal component analysis

- common methods in machine learning
- can interpreted in probabilistic terms
- sensitive to outliers (but can be robustified)

- linear regression
- LS-SVMs
- logistic regression
- principal component analysis

- common methods in machine learning
- can interpreted in probabilistic terms
- sensitive to outliers (but can be robustified)

- linear regression
- LS-SVMs
- logistic regression
- principal component analysis

- common methods in machine learning
- can interpreted in probabilistic terms
- sensitive to outliers (but can be robustified)

- linear regression
- LS-SVMs
- logistic regression
- principal component analysis

- common methods in machine learning
- can interpreted in probabilistic terms
- sensitive to outliers (but can be robustified)

- linear regression
- LS-SVMs
- logistic regression
- principal component analysis

- common methods in machine learning
- can interpreted in probabilistic terms
- sensitive to outliers (but can be robustified)

What is maximum likelihood inference?

• maximise loglikelihood $\mathcal{L}(\theta; \mathbf{x}) = \log p(x_1, .., x_n) = \sum_{i=1}^n \log p(x_i | \theta)$

minimise KL divergence of empirical vs. parametric distribution

 D_{KL} (empirical distr.||parametric distr.) = $-\sum_{i=1} \log p(x_i|\theta) + \text{const.}$

Why is it sensitive to outliers?

- the reference distribution in D_{KL} is the empirical one
- inference is biased towards models supporting outliers
- otherwise, D_{KL} is too large because of low probability for outliers

What is maximum likelihood inference?

• maximise loglikelihood $\mathcal{L}(\boldsymbol{\theta}; \mathbf{x}) = \log p(x_1, .., x_n) = \sum_{i=1}^n \log p(x_i | \boldsymbol{\theta})$

minimise KL divergence of empirical vs. parametric distribution

 D_{KL} (empirical distr.||parametric distr.) = $-\sum_{i=1} \log p(x_i|\theta) + \text{const.}$

Why is it sensitive to outliers?

- the reference distribution in D_{KL} is the empirical one
- inference is biased towards models supporting outliers
- otherwise, D_{KL} is too large because of low probability for outliers

What is maximum likelihood inference?

- maximise loglikelihood $\mathcal{L}(\boldsymbol{\theta}; \mathbf{x}) = \log p(x_1, .., x_n) = \sum_{i=1}^n \log p(x_i | \boldsymbol{\theta})$
- minimise KL divergence of empirical vs. parametric distribution

 D_{KL} (empirical distr.||parametric distr.) = $-\sum_{i=1} \log p(x_i|m{ heta}) + ext{const.}$

Why is it sensitive to outliers?

- the reference distribution in D_{KL} is the empirical one
- inference is biased towards models supporting outliers
- otherwise, D_{KL} is too large because of low probability for outliers

What is maximum likelihood inference?

- maximise loglikelihood $\mathcal{L}(\boldsymbol{\theta}; \mathbf{x}) = \log p(x_1, .., x_n) = \sum_{i=1}^n \log p(x_i | \boldsymbol{\theta})$
- minimise KL divergence of empirical vs. parametric distribution

 D_{KL} (empirical distr.||parametric distr.) = $-\sum_{i=1}^{n} \log p(x_i|m{ heta}) + \mathrm{const.}$

Why is it sensitive to outliers?

- the reference distribution in D_{KL} is the empirical one
- inference is biased towards models supporting outliers
- otherwise, D_{KL} is too large because of low probability for outliers

What is maximum likelihood inference?

• maximise loglikelihood $\mathcal{L}(\boldsymbol{\theta}; \mathbf{x}) = \log p(x_1, .., x_n) = \sum_{i=1}^n \log p(x_i | \boldsymbol{\theta})$

• minimise KL divergence of empirical vs. parametric distribution

 D_{KL} (empirical distr.||parametric distr.) = $-\sum_{i=1} \log p(x_i|m{ heta}) + ext{const.}$

Why is it sensitive to outliers?

- $\bullet\,$ the reference distribution in D_{KL} is the empirical one
- inference is biased towards models supporting outliers
- $\bullet\,$ otherwise, D_{KL} is too large because of low probability for outliers

Pointwise Probability Reinforcements

Idea: provide an alternative to deal with outliers

good distributions cannot explain outliers \Rightarrow low probability

- consequence: not-so-good distributions are enforced
- our solution: provide another mechanism to deal with outliers

Reinforced loglikelihood

 x_i is given a PPR $r(x_i) \ge 0$ as reinforcement to the probability $p(x_i|\theta)$

$$\mathcal{L}(\boldsymbol{\theta}; \mathbf{x}, r) = \sum_{i=1}^{n} \log \left[p\left(x_i | \boldsymbol{\theta} \right) + r(x_i) \right]$$

reinforced maximum likelihood inference:

PPRs r(x_i) ≈ 0 if x_i = clean ⇒ x_i impacts the inference of θ̂
PPRs r(x_i) ≫ 0 if x_i = outlier ⇒ x_i ignored by inference of θ̂

Pointwise Probability Reinforcements

Idea: provide an alternative to deal with outliers

good distributions cannot explain outliers \Rightarrow low probability

- consequence: not-so-good distributions are enforced
- our solution: provide another mechanism to deal with outliers

Reinforced loglikelihood

 x_i is given a PPR $r(x_i) \ge 0$ as reinforcement to the probability $p(x_i|m{ heta})$

$$\mathcal{L}(\boldsymbol{\theta}; \mathbf{x}, r) = \sum_{i=1}^{n} \log \left[p(x_i | \boldsymbol{\theta}) + r(x_i) \right]$$

reinforced maximum likelihood inference:

- PPRs $r(x_i) \approx 0$ if $x_i = \text{clean} \Rightarrow x_i$ impacts the inference of $\hat{\theta}$
- PPRs $r(x_i) \gg 0$ if $x_i =$ outlier $\Rightarrow x_i$ ignored by inference of $\hat{\theta}$

Keeping the PPRs under Control

PPRs cannot be allowed to take any arbitrary positive values

• non-parametric approach: reinforcement $r(\mathbf{x}_i) = r_i$ for each \mathbf{x}_i

$$\mathcal{L}_{\Omega}(\boldsymbol{\theta}; \mathbf{X}, \mathbf{r}) = \sum_{i=1}^{n} \log \left[p(\mathbf{x}_{i} | \boldsymbol{\theta}) + r_{i} \right] - \alpha \Omega(\mathbf{r})$$

 no prior knowledge on outliers (e.g. uniform distribution of outliers or mislabelling probability w.r.t. distance to the classification boundary)

• $\Omega(\mathbf{r}) = \text{penalisation term (e.g. to allow only a few non-zero PPRs)}$

• $\alpha =$ focus on fitting the model vs. considering data as outliers

Keeping the PPRs under Control

PPRs cannot be allowed to take any arbitrary positive values

• non-parametric approach: reinforcement $r(\mathbf{x}_i) = r_i$ for each \mathbf{x}_i

$$\mathcal{L}_{\Omega}(\boldsymbol{\theta}; \mathbf{X}, \mathbf{r}) = \sum_{i=1}^{n} \log \left[p(\mathbf{x}_{i} | \boldsymbol{\theta}) + r_{i} \right] - \alpha \Omega(\mathbf{r})$$

- no prior knowledge on outliers (e.g. uniform distribution of outliers or mislabelling probability w.r.t. distance to the classification boundary)
- $\Omega(\mathbf{r}) = \text{penalisation term (e.g. to allow only a few non-zero PPRs)}$
- lpha = focus on fitting the model vs. considering data as outliers

Keeping the PPRs under Control

PPRs cannot be allowed to take any arbitrary positive values

• non-parametric approach: reinforcement $r(\mathbf{x}_i) = r_i$ for each \mathbf{x}_i

$$\mathcal{L}_{\Omega}(\boldsymbol{\theta}; \mathbf{X}, \mathbf{r}) = \sum_{i=1}^{n} \log \left[p(\mathbf{x}_{i} | \boldsymbol{\theta}) + r_{i} \right] - \alpha \Omega(\mathbf{r})$$

- no prior knowledge on outliers (e.g. uniform distribution of outliers or mislabelling probability w.r.t. distance to the classification boundary)
- $\Omega(\mathbf{r})$ = penalisation term (e.g. to allow only a few non-zero PPRs)

• α = focus on fitting the model vs. considering data as outliers
Keeping the PPRs under Control

PPRs cannot be allowed to take any arbitrary positive values

• non-parametric approach: reinforcement $r(\mathbf{x}_i) = r_i$ for each \mathbf{x}_i

$$\mathcal{L}_{\Omega}(\boldsymbol{\theta}; \mathbf{X}, \mathbf{r}) = \sum_{i=1}^{n} \log \left[p(\mathbf{x}_{i} | \boldsymbol{\theta}) + r_{i} \right] - \alpha \Omega(\mathbf{r})$$

- no prior knowledge on outliers (e.g. uniform distribution of outliers or mislabelling probability w.r.t. distance to the classification boundary)
- $\Omega(\mathbf{r})$ = penalisation term (e.g. to allow only a few non-zero PPRs)
- α = focus on fitting the model vs. considering data as outliers

Control of PPRS through Regularisation

theoretical guarantees and closed form expressions exist for some $\Omega(\mathbf{r})$ • L1 penalisation $\Omega(\mathbf{r}) = \sum_{i=1}^{n} r_i$ shrinks (sparse) PPRs towards zero • L2 regularisation $\Omega(\mathbf{r}) = \frac{1}{2} \sum_{i=1}^{n} r_i^2$ provides smoother solutions

all details in Frénay, B., Verleysen, M. Pointwise Probability Reinforcements for Robust Statistical Inference. Neural networks, 50, 124–141, 2014. short version: "Robustifying Maximum Likelihood Inference" at BENELEARN'16,

Control of PPRS through Regularisation

theoretical guarantees and closed form expressions exist for some $\Omega(\mathbf{r})$ • L1 penalisation $\Omega(\mathbf{r}) = \sum_{i=1}^{n} r_i$ shrinks (sparse) PPRs towards zero • L2 regularisation $\Omega(\mathbf{r}) = \frac{1}{2} \sum_{i=1}^{n} r_i^2$ provides smoother solutions

all details in Frénay, B., Verleysen, M. Pointwise Probability Reinforcements for Robust Statistical Inference. Neural networks, 50, 124-141, 2014. short version: "Robustifying Maximum Likelihood Inference" at BENELEARN'16

$$\sum_{i=1}^{n} \log \left[p\left(\mathbf{x}_{i} | \boldsymbol{\theta}\right) + r_{i} \right] \geq \sum_{i=1}^{n} w_{i} \log p\left(\mathbf{x}_{i} | \boldsymbol{\theta}\right) + const.$$

where $\theta^{\text{old}} = \text{current}$ estimate and $w_i = p\left(\mathbf{x}_i | \theta^{\text{old}}\right) / p\left(\mathbf{x}_i | \theta^{\text{old}}\right) + r_i$

EM-like algorithm

initialise θ , then loop over

compute PPRs with L1 or L2 regularisation ⇒ model-independent
compute instance weights with PPRs ⇒ model-independent
maximise weighted log-likelihood to update θ ⇒ model-specific

$$\sum_{i=1}^{n} \log \left[p\left(\mathbf{x}_{i} | \boldsymbol{\theta}\right) + r_{i} \right] \geq \sum_{i=1}^{n} w_{i} \log p\left(\mathbf{x}_{i} | \boldsymbol{\theta}\right) + const.$$

where $\theta^{\text{old}} = \text{current}$ estimate and $w_i = p\left(\mathbf{x}_i | \theta^{\text{old}}\right) / p\left(\mathbf{x}_i | \theta^{\text{old}}\right) + r_i$

EM-like algorithm

initialise θ , then loop over

- compute PPRs with L1 or L2 regularisation \Rightarrow
- Ocompute instance weights with PPRs
- ${f 0}\,$ maximise weighted log-likelihood to update ${m heta}$

⇒ model-independent

 \Rightarrow model-specific

$$\sum_{i=1}^{n} \log \left[p\left(\mathbf{x}_{i} | \boldsymbol{\theta}\right) + r_{i} \right] \geq \sum_{i=1}^{n} w_{i} \log p\left(\mathbf{x}_{i} | \boldsymbol{\theta}\right) + const.$$

where $\theta^{\text{old}} = \text{current}$ estimate and $w_i = p\left(\mathbf{x}_i | \theta^{\text{old}}\right) / p\left(\mathbf{x}_i | \theta^{\text{old}}\right) + r_i$

EM-like algorithm

initialise θ , then loop over

$$\sum_{i=1}^{n} \log \left[p\left(\mathbf{x}_{i} | \boldsymbol{\theta}\right) + r_{i} \right] \geq \sum_{i=1}^{n} w_{i} \log p\left(\mathbf{x}_{i} | \boldsymbol{\theta}\right) + const.$$

where $\theta^{\text{old}} = \text{current}$ estimate and $w_i = p\left(\mathbf{x}_i | \theta^{\text{old}}\right) / p\left(\mathbf{x}_i | \theta^{\text{old}}\right) + r_i$

EM-like algorithm

initialise θ , then loop over

- compute PPRs with L1 or L2 regularisation
- 2 compute instance weights with PPRs
-) maximise weighted log-likelihood to update heta
- $\Rightarrow \mathsf{model}\mathsf{-}\mathsf{independent}$
- \Rightarrow model-independent

> model-specific

$$\sum_{i=1}^{n} \log \left[p\left(\mathbf{x}_{i} | \boldsymbol{\theta}\right) + r_{i} \right] \geq \sum_{i=1}^{n} w_{i} \log p\left(\mathbf{x}_{i} | \boldsymbol{\theta}\right) + const.$$

where $\theta^{\text{old}} = \text{current}$ estimate and $w_i = p\left(\mathbf{x}_i | \theta^{\text{old}}\right) / p\left(\mathbf{x}_i | \theta^{\text{old}}\right) + r_i$

EM-like algorithm

initialise θ , then loop over

- compute PPRs with L1 or L2 regularisation
- Ocompute instance weights with PPRs
- ${f 3}$ maximise weighted log-likelihood to update ${m heta}$
- \Rightarrow model-independent
- \Rightarrow model-independent

 \Rightarrow model-specific

Illustration: Linear Regression / OLS

Illustration: LS-SVMs

comparison to Suykens et al. (2002) on 22 datasets \Rightarrow see full paper

Illustration: LS-SVMs

comparison to Suykens et al. (2002) on 22 datasets \Rightarrow see full paper

Illustration: Logistic Regression

Illustration: Principal Component Analysis

Conclusion

Probabilistic approaches

probabilistic modelling of label noise is a powerful approach

- easily plugged in various problems/models
- can be used to provide feedback to users
- can embed prior knowledge on label noise

Pointwise probability reinforcements

generic approach to robustify maximum likelihood inference

- many models can be formulated in probabilistic terms
- ullet no parametric assumption ightarrow could deal with non-uniform noise
- easy to implement if weights can be enforced on instances
- further work: more complex models + noise level estimation

try on your own favorite probabilistic model (and let us know!)

Probabilistic approaches

probabilistic modelling of label noise is a powerful approach

- easily plugged in various problems/models
- can be used to provide feedback to users
- can embed prior knowledge on label noise

Pointwise probability reinforcements

generic approach to robustify maximum likelihood inference

- many models can be formulated in probabilistic terms
- $\bullet\,$ no parametric assumption \rightarrow could deal with non-uniform noise
- easy to implement if weights can be enforced on instances
- further work: more complex models + noise level estimation

try on your own favorite probabilistic model (and let us know! 😕)

References

- Frénay, B., Verleysen, M. Classification in the Presence of Label Noise: a Survey. IEEE Trans. Neural Networks and Learning Systems, 25(5), 2014, p. 845-869.
- Frénay, B., Kabán A. A Comprehensive Introduction to Label Noise. In Proc. ESANN, Bruges, Belgium, 23-25 April 2014, p. 667-676.
- Frénay, B., de Lannoy, G., Verleysen, M. Label Noise-Tolerant Hidden Markov Models for Segmentation: Application to ECGs. In Proc. ECML-PKDD 2011, p. 455-470.
- Frénay, B., Doquire, G., Verleysen, M. Estimating mutual information for feature selection in the presence of label noise. Computational Statistics & Data Analysis, 71, 832-848, 2014.
- Frenay, B., Hammer, B. Label-noise-tolerant classification for streaming data. In Proc. IJCNN 2017, Anchorage, AK, 14-19 May 2017, p. 1748-1755.
- Frénay, B., Verleysen, M. Pointwise Probability Reinforcements for Robust Statistical Inference. Neural networks, , 50, 124-141, 2014.
- Bion, Q., Frénay, B. Modelling non-uniform label noise to robustify a classifier with application to neural networks. Submitted to ESANN'18 (under review).