

IMPACT OF COST-SENSITIVITY AND OUTLIERS ROBUSTNESS IN PERCEPTRON LEARNING

P. THOMAS

AM2I

INS2I INSIS

SUMMARY

C Introduction

- C Imbalanced data set
- C Industrial data and outliers

C Multilayer perceptron

- C Structure
- C Criterion to minimize
- C Robust-cost sensitive learning algorithm

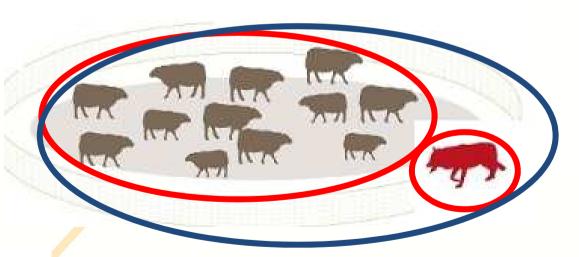
C Simulation example

- C Experimental protocol
- C Results on outliers free dataset
- C Results on outliers polluted dataset

C Conclusion

IMBALANCED DATASET

- C Machine learning needs dataset!
- C Classification goal: affect the good label to each pattern
- C In many cases (quality monitoring, medical diagnosis, credit risk prediction...)
 - C Classes are imbalanced
 - C Some very bad model may have a good score
 - C Leading to undesirable event!



need of cost sensitive approach

ERROR SOURCES: Noise, Outliers and Label noise

C All industrial data sets are noisy and polluted by outliers C Up to 10% of data are outliers C (Hampel 1971) sheep C Label noise occurs in classification data sets sheep sheep wolf sheep sheep sheep sheep sheep sheep wolf sheep → need of robust approach CRAN

INTRO

AN INDUSTRIAL EXAMPLE: ACTA MOBILIER

- C Lacquered panels manufactured for kitchen, stands, shops...
- C Very high quality requirement for the surface
- C Main defects are generated at the lacquering step
- C Quality monitoring:
 - C 7 basics tools of quality
 - C Detection of a process variation (after defects production)
 - C Optimal Experimental Design
 - C Setup robust to variation of some parameters (before defects production)
 - C High quality requirement implies that process is often used at its technological limits
 - C Robust setup may be insufficient

→ necessity to be on-line

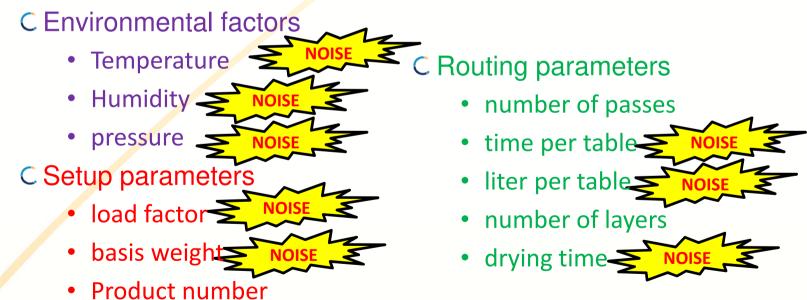
Using of quality prediction model

Data mining approach

AN INDUSTRIAL EXAMPLE: DATA SET

C Quality monitoring problem of a high quality lacquering robot

- C Defects rate important and fluctuating (10% to 45%)
- C 25 different types of defects may be produced
- C Expert knowledge allows to identify impacting factors



AN INDUSTRIAL EXAMPLE: RESULTS

C For one type of defect

DEFECT OCCURRENCE IN DATASET

Non-detection rate: 11,8 %

False positive: 19,2 %

DEFECT PREDICTION BY MODEL

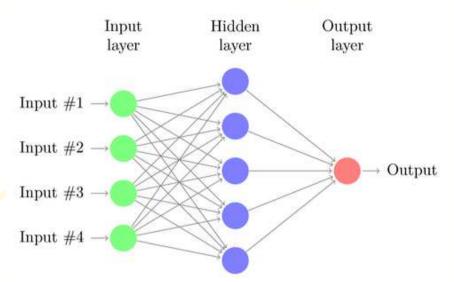
Interview of the manager:

- quality data manually collected
- absence replacement by temporary worker

MULTILAYERS PERCEPTRON MLP: STRUCTURE

C A neural network:

- C Exploitation of a collected data
- C Simple implementation (neural model design partially automated)
- C Improving and adaptation on-line of the process



C The multilayers perceptron:

C Universal approximator

HYPERBOLIC TANGENT

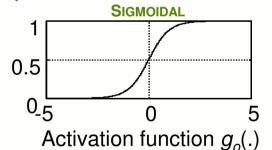
1

0

-1-5

Activation function
$$g_h(.)$$

$$z = g_2 \left(\sum_{i=1}^{n_1} w_i^2 . g_1 \left(\sum_{h=1}^{n_0} w_{ih}^1 . x_h^0 + b_i^1 \right) + b \right)$$



Weights initialization (Nguyen and Widrow, 1990)

MLP: CRITERION TO MINIMIZE

- $V(\theta) = \frac{1}{2n} \sum_{k=1}^{n} \varepsilon^{2}(k, \theta)$ C The classical criterion to minimize:
 - C Hyp: Gaussian noise distribution
 - C Where the prediction error: $\varepsilon(k,\theta) = y(k) \hat{y}(k,\theta)$
 - C Greater is the error → Greater is its influence on criterion value
 - C Quid of the outliers and label noise?
- Robust criterion (weighted by noise variance): $V(\theta) = \frac{1}{2n} \sum_{k=1}^{n} \left(\frac{\varepsilon^2(k,\theta)}{\sigma^2(k)} \right)$
 - C Hyp: mixture of Gaussian (Huber's Model):

$$e \sim (1 - \mu) N(0, \sigma_1^2) + \mu N(0, \sigma_2^2)$$
C Robust weight: $\sigma^2(k) = (1 - \delta(k)) \hat{\sigma}_1^2(i) + \delta(k) \hat{\sigma}_2^2(i)$ with:
$$\begin{cases} \hat{\sigma}_1(i) = \frac{MAD}{0.7} \\ \hat{\sigma}_2(i) = 3.\hat{\sigma}_1(i) \end{cases}$$

- Robust cost sensitive criterion: $V(\theta) = \frac{1}{2n} \sum_{k=1}^{n} \left(C_{ost}(k) \cdot \frac{\varepsilon^2(k,\theta)}{\sigma^2(k)} \right)$
 - C Cost of misclassification:

				predicted class			
				Class 0	Class1		
	real	ass	Class 0	C_{00}	C_{01}		
er 2	re	cle	Class 1	C_{10}	C_{11}		

MLP: ROBUST-COST SENSITIVE LEARNING ALGORITHM

- C The criterion to minimize: $V(\theta) = \frac{1}{2n} \sum_{k=1}^{n} \left(C_{ost}(k) \cdot \frac{\varepsilon^2(k,\theta)}{\sigma^2(k)} \right)$
- C 2nd order Taylor series expansion of $V(\theta)$: $\hat{\theta}^{i+1} = \hat{\theta}^i (H(\hat{\theta}^i))^{-1}V'(\hat{\theta}^i)$
 - C Gradient of the criterion:

$$V'(\theta) = -\frac{1}{n} \sum_{k=1}^{n} \psi(k, \theta) \cdot C_{ost}(k) \cdot \frac{\varepsilon(k, \theta)}{\sigma^{2}(k)}$$

C Estimation of the Hessian Matrix (Levenberg-Marquardt):

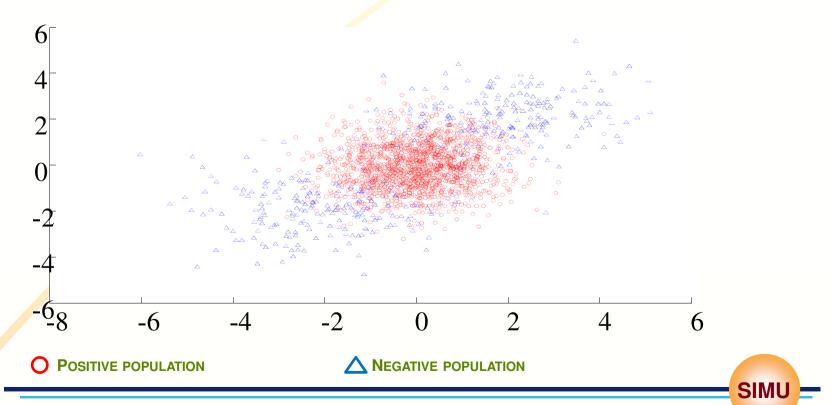
$$H(\theta) = \frac{1}{n} \sum_{k=1}^{n} \psi(k, \theta) \frac{C_{ost}(k)}{\sigma^{2}(k)} \psi^{T}(k, \theta) + \beta I$$

C Where $\Psi(k, \theta)$: the gradient of the network output $\hat{y}(k, \theta)$ with respect to θ .

SIMULATION EXAMPLE: DATASET

C Population constituted with two subpopulations

- C Positive subpopulation
 - C Bivariate normal distribution with mean $(0, 0)^T$ and covariance matrix diag(1, 1)
- C Negative subpopulation
 - C Bivariate normal distribution with mean $(2, 2)^T$ and covariance matrix diag(2, 1)
 - C Bivariate normal distribution with mean (-2, -2)^T and covariance matrix diag(2, 1)



SIMULATION EXAMPLE: PROTOCOL

- **C Dataset comprising 2000 patterns**
 - C 1000 for the learning
 - C 1000 for the validation
- C Evaluation criterion: zero-one score function

$$S_{01} = \frac{1}{n} \sum_{k=1}^{n} I(y(k), \hat{y}(k, \theta))$$

- **C** Two other indicators:
 - C False Alarm rate (FA) $FA = \frac{FalsePos}{FalsePos + TrueNeg}$
 - C Non-Detection rate (ND) $ND = \frac{FalseNeg}{FalseNeg + TruePos}$
- C Misclassification cost:

$$Cost = C_{01}.FalsePos + C_{10}.FalseNeg$$

				predicted class					predicted class			
				Class 0	Class1				Class 0	Class1		
C		1SS	Class 0	1	2		al ıss	Class 0	1	2		SII
	re	cle	Class 1	5	1	ʻ 2017, N	re	Class 1	10	1	HOMAS	

RESULTS ON OUTLIER FREE DATASET

- C Learning of MLP with 2 inputs and 10 hidden neurons
- **C** Four different learning algorithms
 - C Classical Levenberg-marquardt (LM)
 - C Robust Levenberg-marquardt (RLM)
 - C Classical Levenberg-marquardt with cost (LMC)
 - C Robust Levenberg-marquardt with cost (RLMC)

		Cost	S_{01}	FA rate	ND rate
2 4	Without Robust Without Cost	346	9.50%	5.40%	25.49%
II II	With Robust Without Cost	291	8.10%	4.77%	21.08%
Cost ₁₀	Without Robust With Cost	281	8.50%	6.03%	18.14%
ပြိ ပိ	With Robust With Cost	290	8.80%	6.28%	18.63%
2 10	Without Robust Without Cost	606	9.50%	5.40%	25.49%
H H	With Robust Without Cost	506	8.10%	4.77%	21.08%
Ost ₁₀	Without Robust With Cost	446	9.90%	8.54%	15.20%
ပြိ	With Robust With Cost	396	10.60%	10.43%	11.27%

RESULTS ON OUTLIERS POLLUTED DATASET

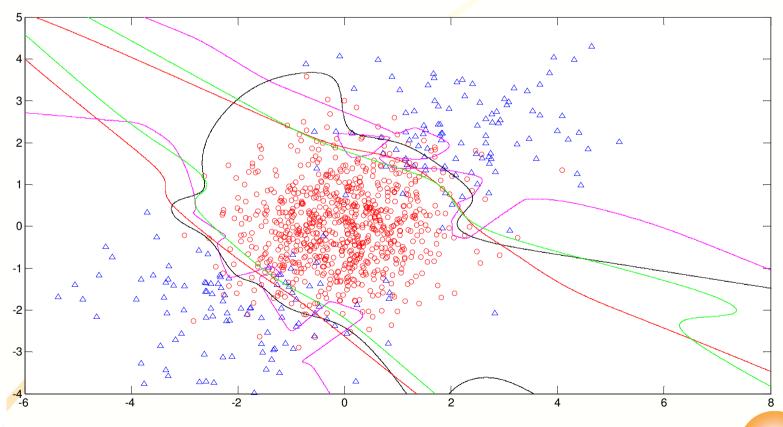
- C Learning dataset corrupted by 10% of noise label
- **C** Same learning algorithms

			Cost	S ₀₁	FA rate	ND rate
2	$Cost_{10} = 5$	Without Robust Without Cost	381	9.90%	4.77%	29.90%
II		With Robust Without Cost	305	8.20%	4.40%	23.40%
Cost ₀₁		Without Robust With Cost	333	8.40%	3.64%	26.96%
C_0		With Robust With Cost	310	8.90%	5.65%	21.57%
7	$Cost_{10} = 10$	Without Robust Without Cost	686	9.90%	4.77%	29.90%
		With Robust Without Cost	540	8.20%	4.40%	23.40%
Cost ₀₁		Without Robust With Cost	482	9.30%	7.04%	18.14%
C_0	Co	With Robust With Cost	384	10.40%	10.30%	10.78%

CLASSES BOUNDS (OUTLIERS POLLUTED DATASET)

- **C** LM in magenta
- **C RLM in black**

- **C LMC** in red
 - **C RLMC** in green



CONCLUSION

- Classification model must take into account
 - C The risk of label noise
 - C The cost of misclassification
- C Modification of the criterion to minimize
 - C Including of robust cost
 - C Including of misclassification cost
- The combination of robust cost and misclassification cost allows to:
 - C limit the impact of outliers and label noise
 - C Favor the non-detection rate comparing to the false alarme rate

IMPACT OF COST-SENSITIVITY AND OUTLIERS ROBUSTNESS IN PERCEPTRON LEARNING

THANK YOU FOR YOUR ATTENTION!

AM2I

INS2I INSIS

