Classification in mutual contamination models

G. Blanchard

Universität Potsdam, Institut für Mathematik

Label Noise Workshop, Nancy 30/11/2017

Joint work with C. Scott, G. Handy, J. Katz-Samuels (U. Michigan)

Contamination models

- 2 Binary classification case One contaminated class Mutual contamination
- 3 Multiclass case One contaminated class Mutual contamination

OUTLINE

Contamination models

- 2 Binary classification case One contaminated class Mutual contamination
- 3 Multiclass case One contaminated class Mutual contamination

STANDARD (GENERATIVE) SETTING FOR CLASSIFICATION

- P_i ≡ P(X|Y = i): generating probability distributions for objects of class 1 ≤ i ≤ L on space X.
- Observed: samples

$$S^i = (X_1^i, \ldots, X_{n_i}^i) \overset{i.i.d}{\sim} P_i$$

- ▶ **Goal:** estimate decision function $f : X \to \{1, ..., L\}$
- Various performance error criteria: average classification error, min-max error, Neyman-Pearson error, ...

STANDARD CLASSIFICATION: GENERAL PRINCIPLES

- Approximate P_i by corresponding empirical distribution P_i
- ► For all error criteria, key quantities to estimate for classifiers f are

$$R_i(f) := \mathbb{P}_i[f(X) \neq i] \to \widehat{R}_i(f) := \frac{1}{n_i} \sum_{j=1}^{n_i} \mathbf{1}\{f(X_j^i) \neq i\}$$

- "Learning"/distribution-free philosophy:
 - don't want a specific (parametric) model for P_i.
 - (first) theoretical goal is universal consistency
- ► Basic strategy: uniform probabilistic control of $|R_i(f) \hat{R}_i(f)|$ over function/set classes C_k
- ► Use structural risk minimization to choose adapted class C_k

CONTAMINATION MODEL

Assume the sample S_i is drawn according to a contaminated distribution:

$$S_i = (X_1^i, \ldots, X_{n_i}^i) \overset{i.i.d.}{\sim} \widetilde{P}_i = \sum_{i=1}^L \pi_{ij} P_j$$

or in short form

$$\widehat{\boldsymbol{P}} = \Pi \boldsymbol{P}$$

(П: mixing matrix)

- Goal: find a classification function *f* that performs well for the true source distributions.
- ► Goal: estimate mixing weights Π and true sources (demixing)
- Can only access/ estimate

$$\widetilde{R}_i(f) := \widetilde{P}_i(f(X) \neq i)$$

EQUIVALENT MODEL: (ASYMMETRIC) RANDOM LABEL NOISE MODEL

Assume

$$(X_i, Y_i) \stackrel{i.i.d.}{\sim} P;$$

- True labels Y_i unobserved, instead \widetilde{Y}_i
- Corrupted labels $\mathbb{P}\left[\widetilde{Y}=i|Y=j,X\right]=\zeta_{ij}$
- Label corruption assumed not to depend on X
- Label corruption not symmetric

MOTIVATING APPLICATION ORGANIC SCINCILLATION DETECTOR

- Detect neutrons and gamma rays; need to classify between them
- Training using gamma ray source (e.g. Na-22) and neutron source (e.g. Cf-252)
- But: no pure neutron source always mixed neutron/gamma ray
- Additionally, background radiation (both particles)

FURTHER SETTINGS AND GOALS

Recover source distributions up to permutation: demixing problem.

 Application: Topic models (each observed document is a mixture of topics; goal is to recover "pure" topic distribution themselves)

- Recover source distributions with the additional knowledge of the support of Π (positions of positive entries).
 - Application: Partial labels models (each object comes with a subset of labels)

UNDERSTANDING LABEL NOISE

- Assume P₀, P₁ have densities p₀, p₁
- Then $\widetilde{P}_0, \widetilde{P}_1$ have densities

$$\begin{cases} \widetilde{p}_0 = (1 - \kappa_0)p_0 + \kappa_0 p_1 \\ \widetilde{p}_1 = (1 - \kappa_1)p_1 + \kappa_1 p_0 \end{cases}$$

Training a regular classifier on contaminated data leads to asymptotic bias and inconsistency except in very particular circumstances.

RELATED WORK, PREVIOUS ASSUMPTIONS

Previous work on related topics include:

- Learning on positive and unlabeled data (LPUE)
- Co-training
- Label noise models and PAC learning
- Generally the following is assumed:
 - P_0 , P_1 have non-overlapping support (\leftrightarrow deterministic target concept)
 - symmetric label noise
 - criterion is probablity of error
- We do not assume the above here
- ► Main asumption: label noise independent of *X* no adversarial noise

• We can surely estimate $\widetilde{R}_i(f)$ from its empirical counterpart

$$\widehat{\widetilde{R}}_i(f) = \frac{1}{n_i} \sum_{j=1}^{n_i} \mathbf{1}\{f(X_j^i) \neq i\},\$$

uniformly in f in a limited complexity classifier class C_K

Observe

$$\begin{split} \widetilde{P}_0 &= (1 - \kappa_0) P_0 + \kappa_0 P_1 \implies \quad \widetilde{R}_0(f) = (1 - \kappa_0) R_0(f) + \kappa_0 R_1(f) \\ \widetilde{P}_1 &= (1 - \kappa_1) P_1 + \kappa_1 P_0 \implies \quad \widetilde{R}_1(f) = (1 - \kappa_1) R_1(f) + \kappa_1 R_0(f) \end{split}$$

implying

$$R_0(f) = \frac{(1-\kappa_1)\widetilde{R}_0(f) - \kappa_0\widetilde{R}_1(f)}{1 - (\kappa_0 + \kappa_1)},$$

$$R_1(f) = \frac{(1-\kappa_0)\widetilde{R}_1(f) - \kappa_1\widetilde{R}_0(f)}{1 - (\kappa_0 + \kappa_1)}$$

• Key point: estimation of contamination proportions κ_0, κ_1 .

Classification in mutual contamination models

OUTLINE

Contamination models

2 Binary classification case One contaminated class Mutual contamination

3 Multiclass case One contaminated class Mutual contamination

Classification in mutual contamination models

Only \widetilde{P}_0 Contaminated: Identifiablity

$$\left\{egin{aligned} (X_1^0,\ldots,X_{n_0}^0) \stackrel{i.i.d.}{\sim} \widetilde{P}_0 = (1-\kappa_0)P_0+\kappa_0P_1\ (X_1^1,\ldots,X_{n_1}^1) \stackrel{i.i.d.}{\sim} P_1 \end{aligned}
ight.$$

Define the "maximum proportion of source H in F"

$$\kappa^*({m {F}}|{m {H}})=\max\left\{\kappa\in [0,1]\Big| \exists ext{ a distribution } {m {G}} ext{ s.t.}{m {F}}=(1-\kappa){m {G}}+\kappa{m {H}}
ight\};$$

The following holds:

 $\kappa_0 = \kappa^*(\widetilde{P}_0|P_1) \Leftrightarrow \kappa^*(P_0|P_1) = 0$ (P_0 is irreducible wrt. P_1)

ONLY \widetilde{P}_0 CONTAMINATED: ESTIMATION

► *F*, *H* distributions; Lebesgue decomposition:

 $F=F_H+F_H^{\perp},$

with $F_H \ll H$ and (F_H^{\perp}, H) mutually singular;

$$\kappa^*(F|H) = \mathrm{Ess.Inf.} \frac{dF_H}{dH} = \inf_{C:H(C)>0} \frac{F(C)}{H(C)}$$

Suggests the estimator

$$\widehat{\kappa}(\widehat{\widetilde{P}}_{0}|\widehat{P}_{1}) = \inf_{C \in \mathcal{C}_{k}} \frac{\widehat{\widetilde{P}}_{0}(C) + \varepsilon_{k}}{\left(\widehat{P}_{1}(C) - \varepsilon_{k}\right)_{+}}$$

• $\widehat{\kappa}(\widehat{\widetilde{P}}_0|\widehat{P}_1) \ge \kappa^*(\widetilde{P}_0|P_1)$ with high probability

Appropriate choice of *ε_k* + take inf. over sequence of nested classes *C*₁ ⊂ *C*₂ ⊂ ... with universal approximation property yields universally consistent estimator

MUTUAL CONTAMINATION

Classification in mutual contamination models

MUTUAL CONTAMINATION

MUTUAL CONTAMINATION

$$\begin{cases} \widetilde{P}_0 = (1 - \kappa_0)P_0 + \kappa_0 P_1, \\ \widetilde{P}_1 = (1 - \kappa_1)P_1 + \kappa_1 P_0 \end{cases}$$

Proposition (Decoupled Representation) Assume $P_0 \neq P_1$ and (A) $\kappa_1 + \kappa_2 < 1$;

then $\widetilde{P}_0 \neq \widetilde{P}_1$, and there exist unique $0 \leq \widetilde{\kappa}_0, \widetilde{\kappa}_1 < 1$ such that

$$\begin{cases} \widetilde{P}_0 = (1 - \widetilde{\kappa}_0) P_0 + \widetilde{\kappa}_0 \widetilde{P}_1, \\ \widetilde{P}_1 = (1 - \widetilde{\kappa}_1) P_1 + \widetilde{\kappa}_1 \widetilde{P}_0. \end{cases}$$

with

$$\widetilde{\kappa}_0 = \frac{\kappa_0}{1-\kappa_1} < 1; \qquad \widetilde{\kappa}_1 = \frac{\kappa_1}{1-\kappa_0} < 1.$$

DENTIFIABILITY

Decoupled model:

$$\begin{cases} \widetilde{P}_0 = (1 - \widetilde{\kappa}_0) P_0 + \widetilde{\kappa}_0 \widetilde{P}_1, \\ \widetilde{P}_1 = (1 - \widetilde{\kappa}_1) P_1 + \widetilde{\kappa}_1 \widetilde{P}_0. \end{cases}$$

From the results on mixture proportion estimation: we can estimate $\tilde{\kappa}_0$ consistently if $\kappa(P_0, \tilde{P}_1) = 0$

Lemma

Under assumption (A): $\kappa_0 + \kappa_1 < 1$, it holds

$$(\mathbf{B}) \begin{cases} \kappa(P_0|\widetilde{P}_1) = 0\\ \kappa(P_1|\widetilde{P}_0) = 0 \end{cases} \iff \begin{cases} \kappa(P_0|P_1) = 0\\ \kappa(P_1|P_0) = 0 \end{cases} (\mathbf{C})$$

(C): P_0 and P_1 are mutually irreducible

IDENTIFIABILITY

Classification in mutual contamination models

IDENTIFIABILITY

MUTUAL IRREDUCIBILITY

- Top: mutually irreducible
- Middle: mutually irreducible
- Bottom: P_1 irreducible wrt P_0 , but P_0 not irreducible wrt P_0 .

MUTUAL IRREDUCIBILITY

Under joint distribution model

$$(X, Y) \sim \mathbb{P}_{XY}, \qquad \eta(x) = \mathbb{P}_{XY} [Y = 1 | X = x]$$

Then:

$$\begin{split} \kappa(P_0|P_1) &= 0 \\ \kappa(P_1|P_0) &= 0 \end{split} \Leftrightarrow \begin{cases} \mathrm{Ess.Sup.}_x \eta(x) &= 1, \\ \mathrm{Ess.Inf.}_x \eta(x) &= 0, \end{cases} \end{split}$$

INTERPRETATION OF THE IRREDUCIBLE SOLUTION

For given observed contaminated $\widetilde{P}_0 \neq \widetilde{P}_1$, let Δ be the convex set of quadruples ($\kappa_0, \kappa_1, P_0, P_1$) satisfying **(A)** and solution of:

$$\begin{cases} \widetilde{P}_0 = (1 - \kappa_0) P_0 + \kappa_0 P_1, \\ \widetilde{P}_1 = (1 - \kappa_1) P_1 + \kappa_1 P_0 \end{cases}$$
(1)

Proposition

The solution $(\kappa_0^*, \kappa_1^*, P_0^*, P_1^*)$ is characterized as either of:

- the unique quadruple for which (P_0, P_1) are mutually irreducible;
- the unique maximizer over \wedge of $\|P_0 P_1\|_{TV}$.
- ► the unique minimizer over ∧ of the Bayes error for classifying P₀ vs. P₁ with equal a priori proportions

Interpretation: maximal denoising

THE TWO REPRESENTATIONS

Classification in mutual contamination models

CONSISTENT ESTIMATION OF CONTAMINATION PROPORTIONS

Decoupled representation:

$$\begin{cases} \widetilde{P}_0 = (1 - \widetilde{\kappa}_0) P_0 + \widetilde{\kappa}_0 \widetilde{P}_1, \\ \widetilde{P}_1 = (1 - \widetilde{\kappa}_1) P_1 + \widetilde{\kappa}_1 \widetilde{P}_0. \end{cases}$$

- (P₀, P₁) mutually irreducible ⇒ P₀ irreducible wrt P
 ₁, and P₁ irreducible wrt. P
 ₁
- leverage case of only one contaminated distribution (twice):

$$\widehat{\widetilde{\kappa}}_{0} = \widehat{\kappa}(\widehat{\widetilde{P}}_{0}|\widehat{\widetilde{P}}_{1}); \qquad \widehat{\widetilde{\kappa}}_{1} = \widehat{\kappa}(\widehat{\widetilde{P}}_{1}|\widehat{\widetilde{P}}_{0})$$

Then

$$\widehat{\kappa}_{0} = \frac{\widehat{\widetilde{\kappa}}_{0}(1 - \widetilde{\kappa}_{1})}{1 - \widetilde{\kappa}_{0}\widetilde{\kappa}_{1}}; \qquad \widehat{\kappa}_{1} = \frac{\widehat{\widetilde{\kappa}}_{1}(1 - \widetilde{\kappa}_{0})}{1 - \widetilde{\kappa}_{0}\widetilde{\kappa}_{1}}$$

are universally consistent estimators of κ_0, κ_1 under (A), (C).

CONSISTENT ESTIMATION OF RISK

Construction of estimator for type II error:

$$egin{aligned} \widetilde{P}_0 &= (1 - \widetilde{\kappa}_0) P_0 + \widetilde{\kappa}_0 \widetilde{P}_1 \Rightarrow R_0(f) = rac{\widetilde{R}_0(f) - \widetilde{\kappa}_0(1 - \widetilde{R}_1(f))}{1 - \widetilde{\kappa}_0} \ &
ightarrow \widehat{R}_0(f) = rac{\widetilde{\widetilde{R}}_0(f) - \widetilde{\widetilde{\kappa}}_0(1 - \widetilde{\widetilde{R}}_1(f))}{1 - \widetilde{\widetilde{\kappa}}_0} \end{aligned}$$

- Uniform convergence over e.g. VC-Classes of classifiers f
- Can apply SRM principle to choose appropriate model
- Can construct universally consistent estimators for various error measures

OUTLINE

Contamination models

- 2 Binary classification case One contaminated class Mutual contamination
- 3 Multiclass case One contaminated class Mutual contamination

Only \widetilde{P}_0 Contaminated

$$\begin{cases} \left(X_1^0, \dots, X_{n_0}^0\right) \stackrel{i.i.d.}{\sim} \widetilde{P}_0 = (1 - \kappa_0)P_0 + \kappa_0 \left(\sum_{i=1}^M \mu_i P_i\right) & \text{with } \sum_i \mu_i = 1\\ \left(X_1^i, \dots, X_{n_1}^i\right) \stackrel{i.i.d.}{\sim} P_i; & i = 1, \dots, M \end{cases}$$

• Maximum collective proportion of H_1, \ldots, H_M in F ?

$$\kappa^*(F|H_1,\ldots,H_M) = \max_{\mu\in \mathcal{S}_M}\kappa^*(F|H_\mu)$$

where

- S_M : (M-1)-dimensional simplex
- For $\mu \in S_M$: $H_\mu = \sum_{i=1}^M \mu_i H_i$
- ► Interpretation: attained for "projection" of *F* onto convex hull of $\{H_1, \ldots, H_M\}$ for the separation distance $1 \kappa^*(F|\bullet)$

MAXIMAL MIXTURE PROPORTION

MAXIMAL MIXTURE PROPORTION

MAXIMAL MIXTURE PROPORTION ESTIMATION (MMPE)

$$\kappa^*(F|H_1,\ldots,H_M) = \max_{\mu\in S_M}\kappa^*(F|H_\mu)$$

Estimator:

$$\widehat{\kappa}(\widehat{P}_0|\widehat{P}_1,\ldots,\widehat{P}_M) = \max_{\mu\in \mathcal{S}_M} \inf_{\mathcal{C}\in \mathcal{C}_k} \frac{\widehat{P}_0(\mathcal{C}) + \varepsilon_{0,k}}{\left(\widehat{P}_\mu(\mathcal{C}) - \sum_i \mu_i \varepsilon_{i,k}\right)},$$

for (C_k) sequence of VC-classes

- $\hat{\kappa} \ge \kappa^*$ with high probability
- Universally consistent if the VC sequence is universally approximating
- $\hat{\mu}$ attaining the max converges to the population maximum μ , whenever the latter is unique

IDENTIFIABILITY

$$\widetilde{P}_0 = (1 - \kappa_0)P_0 + \kappa_0 \left(\sum_{i=1}^M \mu_i P_i\right)$$
 with $\sum_i \mu_i = 1$

• When is it the case that $\kappa_0 = \kappa^* (\widetilde{P}_0 | P_1, \dots, P_M)$?

IDENTIFIABILITY

$$\widetilde{P}_{0} = (1 - \kappa_{0})P_{0} + \kappa_{0} \left(\sum_{i=1}^{M} \mu_{i}P_{i}\right) \quad \text{with } \sum_{i} \mu_{i} = 1$$

$$\bullet \text{ When is it the case that } \kappa_{0} = \kappa^{*}(\widetilde{P}_{0}|P_{1}, \dots, P_{M}) \quad ?$$

$$\bullet \text{ Observed / Uncontaminated}$$

$$\bullet \text{ Unobserved / Uncontaminated}$$

• \rightarrow joint irreducibility of (P_i) ...

JOINT IRREDUCIBILITY

Call a family of distributions Q_1, \ldots, Q_L jointly irreducible under either of the equivalent conditions:

- For any *I* ⊂ {1,..., *L*}; 1 ≤ |*I*| ≤ (*L* − 1): any distribution in ConvHull {*Q_i*, *i* ∈ *I*} is irreducible with respect to any distribution in ConvHull {*Q_i*, *i* ∈ *I^c*}
- If $\sum_{i=1}^{L} \gamma_i Q_i$ is a distribution, then $\gamma_i \ge 0$ for all *i*.
- ► If M₁(X) is the set of all probability distributions on X,

 $\mathcal{M}_1(\mathcal{X}) \cap \operatorname{Span} \left\{ \mathcal{Q}_i, 1 \leq i \leq n \right\} = \operatorname{ConvHull} \left\{ \mathcal{Q}_i, 1 \leq i \leq n \right\}$

JOINT IRREDUCIBILITY - INTERPRETATION

Assume:

- (P_1, \ldots, P_L) are jointly irreducible;
- $ightarrow \widetilde{P}_i = \pi_i^T P$, with π_i (rows of the mixing matrix Π) linearly independent

Then:

$$\kappa^*(\widetilde{P}_k|(\widetilde{P}_i)_{i\in I}) = \kappa^*(\pi_k|(\pi_i)_{i\in I}),$$

and there is a one-to-one correspondance between the set of residues.

RECOVERABILITY

Recall the general contamination model:

$$\widetilde{P}_i = \sum_{i=1}^L \pi_{ij} P_j \qquad \Longleftrightarrow \qquad \widetilde{P} = \prod P$$

Call mixing weight matrix Π *recoverable* under either of the equivalent conditions:

- Π⁻¹ has strictly positive diagonal entries and nonpositive off-diagonal entries
- For all ℓ, κ^{*}(π_ℓ | {π_j, j ≠ ℓ}) = κ_ℓ is uniquely attained for decomposition

$$\boldsymbol{\pi}_{\ell} = (1 - \kappa_{\ell}) \boldsymbol{e}_{\ell} + \kappa_{\ell} \boldsymbol{\pi}_{\ell}^{\prime}, \qquad (*)$$

where π_{ℓ} is ℓ -th row of Π and $\boldsymbol{e} = \ell$ -th canonical basis vector, $\boldsymbol{e}_{\ell} = (0, \dots, 0, 1, 0, \dots, 0)$

DECONTAMINATION UNDER THE RECOVERABILITY ASSUMPTION

- ► Recoverability implies π_ℓ = (1 − κ_ℓ)**e**_ℓ + κ_ℓπ'_ℓ, unique maximal decomposition
- Irreducibility implies one-to-one correspondance, therefore

$$\widetilde{\pmb{P}}_\ell = (\pmb{1} - \kappa_\ell) \pmb{P}_\ell + \sum_{j
eq \ell}
u_{\ell j} \widetilde{\pmb{P}}_j$$
 ;

unique maximal decomposition.

DECONTAMINATION UNDER THE RECOVERABILITY ASSUMPTION

- ► Recoverability implies π_ℓ = (1 − κ_ℓ)**e**_ℓ + κ_ℓπ'_ℓ, unique maximal decomposition
- Irreducibility implies one-to-one correspondance, therefore

$$\widetilde{\pmb{P}}_\ell = (\pmb{1} - \kappa_\ell) \pmb{P}_\ell + \sum_{j
eq \ell}
u_{\ell j} \widetilde{\pmb{P}}_j$$
 ;

unique maximal decomposition.

- ► Conclusion: κ_{ℓ} can be estimated consistently by MMPE estimators $\widehat{\kappa}(\widehat{\widetilde{P}}_{\ell}|\{\widehat{\widetilde{P}}_{j}, j \neq \ell\})$
- ► We estimate also consistently the sources P_{ℓ} (residues), and further $\nu_{\ell j}$, Π^{-1} and finally Π

WHEN DOES RECOVERABILITY HOLD?

WHEN DOES RECOVERABILITY HOLD?

WHEN DOES RECOVERABILITY HOLD?

CONSISTENT ESTIMATION OF RISK

From

$$\widetilde{\pmb{\mathcal{P}}}_\ell = (\mathsf{1}-\kappa_\ell)\pmb{\mathcal{P}}_\ell + \sum_{j
eq \ell}
u_{\ell j} \widetilde{\pmb{\mathcal{P}}}_j$$

we get, denoting $\widetilde{R}_{ij}(f) = \widetilde{\mathbb{P}}_i(f(X) \neq j)$

$$R_{\ell}(f) = \frac{\widetilde{R}_{\ell\ell}(f) - \sum_{j \neq \ell} \nu_{\ell j} \widetilde{R}_{\ell j}}{1 - \kappa_{\ell}} \longrightarrow \qquad \widehat{R}_{\ell}(f) = \frac{\widetilde{\widetilde{R}}_{\ell\ell}(f) - \sum_{j \neq \ell} \widehat{\nu}_{\ell j} \widetilde{\widetilde{R}}_{\ell j}}{1 - \widehat{\kappa}_{\ell}}$$

Then it holds:

$$\sup_{f\in \mathcal{F}_{k(n)}}\left|\widehat{R}_{\ell}(f)-R_{\ell}(f)
ight|
ightarrow 0$$
 in probability,

as $n = \min(n_1, \dots, n_L) \to \infty$, for VC-classes \mathcal{F}_k of dimension V_k , provided $\frac{V_{k(n)} \log n}{n} \to 0$

- Goal: estimating sources up to permutation (demixing problem)
- Try to "reduce dimension":

- Goal: estimating sources up to permutation (demixing problem)
- Try to "reduce dimension":

Contaminated distributions
 S

- Goal: estimating sources up to permutation (demixing problem)
- Try to "reduce dimension":

Residues always belong to the boundary

- Goal: estimating sources up to permutation (demixing problem)
- Try to "reduce dimension":

- Residues always belong to the boundary
- Need a test of whether the residues belong to the same "face"

- Goal: estimating sources up to permutation (demixing problem)
- Try to "reduce dimension":

- Residues always belong to the boundary
- Need a test of whether the residues belong to the same "face"

- Goal: estimating sources up to permutation (demixing problem)
- Try to "reduce dimension":

Contaminated distributions
 (Random) mixture of contaminated distributions (excluding one)

- Residues always belong to the boundary
- Need a test of whether the residues belong to the same "face"

- Goal: estimating sources up to permutation (demixing problem)
- Try to "reduce dimension":

- Residues always belong to the boundary
- Need a test of whether the residues belong to the same "face"

- Goal: estimating sources up to permutation (demixing problem)
- Try to "reduce dimension":

- Residues always belong to the boundary
- Need a test of whether the residues belong to the same "face"
- If test does not reject, apply algorithm recursively

- Advantage: only need estimator κ̂ for two distributions (much simpler to implement)
- Advantage: only need full column rank (weaker than recoverability) to establish population consistency
- Disadvantage: need more iterations/retries, theoretical consistency of estimation only established under the stronger assumption of

$$\forall i \qquad \operatorname{Supp}(P_i) \not\subseteq \bigcup_{j \neq i} \operatorname{Supp}(P_j)$$

Extension: If support S of ⊓ is known, and all columns of S are unique, can recover the specific sources by support matching.

CONCLUSIONS

Contributions:

- Nonparametric/distribution-free point of view
- 2-class case: characterization of irreducible solution and consistent estimation
- Multiclass case:
 - Consistent maximal mixture proportions estimation
 - Consistent de-contamination under irreducibility + recoverability
 - Consistent de-mixing (up to permutation) under support irreducibility + full column rank
 - Consistent de-contamination under the same conditions as the previous point, if support of mixing weights known

THANK YOU FOR YOUR ATTENTION!

REFERENCES

- G. Blanchard, G. Lee, C. Scott. Semi-Supervised Novelty Detection. Journal of Machine Learning Research 11: 2973-3009, 2010.
- C. Scott, G. Blanchard, G. Handy. Classification with Asymmetric Label Noise: Consistency and Maximal Denoising. COLT, 2013
- G. Blanchard, C. Scott. Decontamination of mutually contaminated models. AISTATS, 2014

C. Scott.

A Rate of Convergence for Mixture Proportion Estimation, with Application to Learning from Noisy Labels. AISTATS, 2015.

