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STANDARD (GENERATIVE) SETTING FOR

CLASSIFICATION

I Pi ≡ P(X |Y = i): generating probability distributions for objects of
class 1 ≤ i ≤ L on space X .

I Observed: samples

Si = (X i
1, . . . ,X

i
ni

)
i.i.d∼ Pi

I Goal: estimate decision function f : X → {1, . . . ,L}
I Various performance error criteria: average classification error,

min-max error, Neyman-Pearson error, . . .
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STANDARD CLASSIFICATION: GENERAL PRINCIPLES

I Approximate Pi by corresponding empirical distribution P̂i

I For all error criteria, key quantities to estimate for classifiers f are

Ri (f ) := Pi [f (X ) 6= i]→ R̂i (f ) :=
1
ni

ni∑
j=1

1{f (X i
j ) 6= i}

I “Learning”/distribution-free philosophy:
I don’t want a specific (parametric) model for Pi .
I (first) theoretical goal is universal consistency

I Basic strategy: uniform probabilistic control of
∣∣∣Ri (f )− R̂i (f )

∣∣∣ over
function/set classes Ck

I Use structural risk minimization to choose adapted class Ck
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CONTAMINATION MODEL

I Assume the sample Si is drawn according to a contaminated
distribution:

Si = (X i
1, . . . ,X

i
ni

)
i.i.d.∼ P̃i =

L∑
i=1

πijPj

or in short form
P̂ = ΠP

(Π: mixing matrix)
I Goal: find a classification function f that performs well for the true

source distributions.
I Goal: estimate mixing weights Π and true sources (demixing)
I Can only access/ estimate

R̃i (f ) := P̃i (f (X ) 6= i)
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EQUIVALENT MODEL: (ASYMMETRIC) RANDOM

LABEL NOISE MODEL

Assume
(Xi ,Yi )

i.i.d.∼ P ;

I True labels Yi unobserved, instead Ỹi

I Corrupted labels P
[
Ỹ = i |Y = j ,X

]
= ζij

I Label corruption assumed not to depend on X
I Label corruption not symmetric
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MOTIVATING APPLICATION
ORGANIC SCINCILLATION DETECTOR

I Detect neutrons and gamma rays; need to classify between them
I Training using gamma ray source (e.g. Na-22) and neutron source

(e.g. Cf-252)
I But: no pure neutron source – always mixed neutron/gamma ray
I Additionally, background radiation (both particles)
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FURTHER SETTINGS AND GOALS

I Recover source distributions up to permutation: demixing problem.
I Application: Topic models (each observed document is a mixture of

topics; goal is to recover “pure” topic distribution themselves)

I Recover source distributions with the additional knowledge of the
support of Π (positions of positive entries).

I Application: Partial labels models (each object comes with a subset of
labels)
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UNDERSTANDING LABEL NOISE

I Assume P0,P1 have densities p0,p1

I Then P̃0, P̃1 have densities{
p̃0 = (1− κ0)p0 + κ0p1

p̃1 = (1− κ1)p1 + κ1p0

Simple algebra:

p1(x)

p0(x)
≶ λ⇐⇒ p̃1(x)

p̃0(x)
≶ γ,

where

λ(γ) =
κ1 + γ(1− κ1)

1− κ0 − γκ0

Training a regular classifier on contaminated data leads to asymptotic
bias and inconsistency except in very particular circumstances.
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RELATED WORK, PREVIOUS ASSUMPTIONS

I Previous work on related topics include:
I Learning on positive and unlabeled data (LPUE)
I Co-training
I Label noise models and PAC learning

I Generally the following is assumed:
I P0, P1 have non-overlapping support ( ↔ deterministic target concept )
I symmetric label noise
I criterion is probablity of error

I We do not assume the above here
I Main asumption: label noise independent of X – no adversarial noise
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I We can surely estimate R̃i (f ) from its empirical counterpart

̂̃R i (f ) =
1
ni

ni∑
j=1

1{f (X i
j ) 6= i},

uniformly in f in a limited complexity classifier class CK

I Observe

P̃0 = (1− κ0)P0 + κ0P1 =⇒ R̃0(f ) = (1− κ0)R0(f ) + κ0R1(f )

P̃1 = (1− κ1)P1 + κ1P0 =⇒ R̃1(f ) = (1− κ1)R1(f ) + κ1R0(f )

implying

R0(f ) =
(1− κ1)R̃0(f )− κ0R̃1(f )

1− (κ0 + κ1)
,

R1(f ) =
(1− κ0)R̃1(f )− κ1R̃0(f )

1− (κ0 + κ1)

I Key point: estimation of contamination proportions κ0, κ1.
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THE BINARY CASE
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ONLY P̃0 CONTAMINATED: IDENTIFIABLITY

(X 0
1 , . . . ,X

0
n0

)
i.i.d.∼ P̃0 = (1− κ0)P0 + κ0P1

(X 1
1 , . . . ,X

1
n1

)
i.i.d.∼ P1

I Define the “maximum proportion of source H in F ”

κ∗(F |H) = max
{
κ ∈ [0,1]

∣∣∣∃ a distribution G s.t.F = (1− κ)G + κH
}

;

I The following holds:

κ0 = κ∗(P̃0|P1)⇔ κ∗(P0|P1) = 0 (P0 is irreducible wrt.P1)
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ONLY P̃0 CONTAMINATED: ESTIMATION

I F ,H distributions; Lebesgue decomposition:

F = FH + F⊥H ,

with FH � H and (F⊥H ,H) mutually singular;

κ∗(F |H) = Ess.Inf.
dFH

dH
= inf

C:H(C)>0

F (C)

H(C)

I Suggests the estimator

κ̂(
̂̃P0|P̂1) = inf

C∈Ck

̂̃P0(C) + εk(
P̂1(C)− εk

)
+

I κ̂(
̂̃P0|P̂1) ≥ κ∗(P̃0|P1) with high probability

I Appropriate choice of εk + take inf. over sequence of nested classes
C1 ⊂ C2 ⊂ . . . with universal approximation property yields universally
consistent estimator
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MUTUAL CONTAMINATION
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MUTUAL CONTAMINATION
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MUTUAL CONTAMINATION

{
P̃0 = (1− κ0)P0 + κ0P1,

P̃1 = (1− κ1)P1 + κ1P0

Proposition (Decoupled Representation)
Assume P0 6= P1 and

(A) κ1 + κ2 < 1 ;

then P̃0 6= P̃1, and there exist unique 0 ≤ κ̃0, κ̃1 < 1 such that{
P̃0 = (1− κ̃0)P0 + κ̃0P̃1,

P̃1 = (1− κ̃1)P1 + κ̃1P̃0.

with
κ̃0 =

κ0

1− κ1
< 1; κ̃1 =

κ1

1− κ0
< 1.
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IDENTIFIABILITY

Decoupled model: {
P̃0 = (1− κ̃0)P0 + κ̃0P̃1,

P̃1 = (1− κ̃1)P1 + κ̃1P̃0.

From the results on mixture proportion estimation: we can estimate κ̃0

consistently if κ(P0, P̃1) = 0

Lemma
Under assumption (A): κ0 + κ1 < 1, it holds

(B)

{
κ(P0|P̃1) = 0

κ(P1|P̃0) = 0

}
⇐⇒

{
κ(P0|P1) = 0
κ(P1|P0) = 0

}
(C)

(C): P0 and P1 are mutually irreducible
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IDENTIFIABILITY

Observed / Contaminated

P̃1

P̃0
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IDENTIFIABILITY

mutually irreducible
Unobserved / Uncontaminated,

Observed / Contaminated

P0

P1
P̃1

P̃0
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MUTUAL IRREDUCIBILITY

I Top: mutually irreducible
I Middle: mutually irreducible
I Bottom: P1 irreducible wrt P0, but P0 not irreducible wrt P0.
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MUTUAL IRREDUCIBILITY

Under joint distribution model

(X ,Y ) ∼ PXY , η(x) = PXY [Y = 1|X = x ]

Then:
κ(P0|P1) = 0
κ(P1|P0) = 0

}
⇔

{
Ess.Sup.xη(x) = 1,
Ess.Inf.xη(x) = 0,
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INTERPRETATION OF THE IRREDUCIBLE SOLUTION

For given observed contaminated P̃0 6= P̃1, let ∆ be the convex set of
quadruples (κ0, κ1,P0,P1) satisfying (A) and solution of:{

P̃0 = (1− κ0)P0 + κ0P1,

P̃1 = (1− κ1)P1 + κ1P0

(1)

Proposition
The solution (κ∗0, κ

∗
1,P

∗
0 ,P

∗
1 ) is characterized as either of:

I the unique quadruple for which (P0,P1) are mutually irreducible;
I the unique maximizer over Λ of ‖P0 − P1‖TV .
I the unique minimizer over Λ of the Bayes error for classifying P0 vs.

P1 with equal a priori proportions

Interpretation: maximal denoising
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THE TWO REPRESENTATIONS

κ1κ̃1

�

κ̃0 κ0

Decoupled representation

{
P̃0 = (1− κ̃0)P0 + κ̃0P̃1,

P̃1 = (1− κ̃1)P1 + κ̃1P̃0.

Original representation

{
P̃0 = (1− κ0)P0 + κ0P1,

P̃1 = (1− κ1)P1 + κ1P0
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GEOMETRY OF SOLUTIONS

0 κ0κ̃∗0 = κ∗(P̃0, P̃1)

κ̃∗1 = κ∗(P̃1, P̃0)

Λ

1

(κ∗0, κ
∗
1)

κ1

1
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CONSISTENT ESTIMATION OF CONTAMINATION

PROPORTIONS

Decoupled representation:{
P̃0 = (1− κ̃0)P0 + κ̃0P̃1,

P̃1 = (1− κ̃1)P1 + κ̃1P̃0.

I (P0,P1) mutually irreducible⇒ P0 irreducible wrt P̃1, and P1

irreducible wrt. P̃1

I leverage case of only one contaminated distribution (twice):

̂̃κ0 = κ̂(
̂̃P0|
̂̃P1); ̂̃κ1 = κ̂(

̂̃P1|
̂̃P0)

I Then

κ̂0 =
̂̃κ0(1− κ̃1)

1− κ̃0κ̃1
; κ̂1 =

̂̃κ1(1− κ̃0)

1− κ̃0κ̃1

are universally consistent estimators of κ0, κ1 under (A), (C).
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CONSISTENT ESTIMATION OF RISK

I Construction of estimator for type II error:

P̃0 = (1− κ̃0)P0 + κ̃0P̃1 ⇒ R0(f ) =
R̃0(f )− κ̃0(1− R̃1(f ))

1− κ̃0

→ R̂0(f ) =
̂̃R0(f )− ̂̃κ0(1− ̂̃R1(f ))

1− ̂̃κ0

I Uniform convergence over e.g. VC-Classes of classifiers f
I Can apply SRM principle to choose appropriate model
I Can construct universally consistent estimators for various error

measures
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ONLY P̃0 CONTAMINATED


(X 0

1 , . . . ,X
0
n0

)
i.i.d.∼ P̃0 = (1− κ0)P0 + κ0

(
M∑

i=1

µiPi

)
with

∑
i

µi = 1

(X i
1, . . . ,X

i
n1

)
i.i.d.∼ Pi ; i = 1, . . . ,M

I Maximum collective proportion of H1, . . . ,HM in F ?

κ∗(F |H1, . . . ,HM) = max
µ∈SM

κ∗(F |Hµ)

where
I SM : (M − 1)-dimensional simplex
I For µ ∈ SM : Hµ =

∑M
i=1 µiHi

I Interpretation: attained for “projection” of F onto convex hull of
{H1, . . . ,HM} for the separation distance 1− κ∗(F |•)
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MAXIMAL MIXTURE PROPORTION

Observed / Contaminated

Observed / Uncontaminated

P1

P2

P̃0
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MAXIMAL MIXTURE PROPORTION

MMP Residue of P̃0 wrt. P1, P2

Observed / Contaminated

Observed / Uncontaminated

P1

P2

P̃0
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MAXIMAL MIXTURE PROPORTION ESTIMATION

(MMPE)

κ∗(F |H1, . . . ,HM) = max
µ∈SM

κ∗(F |Hµ)

I Estimator:

κ̂(P̂0|P̂1, . . . , P̂M) = max
µ∈SM

inf
C∈Ck

P̂0(C) + ε0,k(
P̂µ(C)−

∑
i µiεi,k

) ,
for (Ck ) sequence of VC-classes

I κ̂ ≥ κ∗ with high probability
I Universally consistent if the VC sequence is universally

approximating
I µ̂ attaining the max converges to the population maximum µ,

whenever the latter is unique
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IDENTIFIABILITY

P̃0 = (1− κ0)P0 + κ0

(
M∑

i=1

µiPi

)
with

∑
i

µi = 1

I When is it the case that κ0 = κ∗(P̃0|P1, . . . ,PM) ?

Unobserved / Uncontaminated

Observed / Contaminated

P0?

P0?

Observed / Uncontaminated

P2

P1

P̃0

P0 irreducible w.r.t. all Pµ,µ ∈ SM is not sufficient for identifiability
I → joint irreducibility of (Pi ). . .
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JOINT IRREDUCIBILITY

Call a family of distributions Q1, . . . ,QL jointly irreducible under either of
the equivalent conditions:

I For any I ⊂ {1, . . . ,L}; 1 ≤ |I| ≤ (L− 1):
any distribution in ConvHull {Qi , i ∈ I} is irreducible with respect to
any distribution in ConvHull {Qi , i ∈ Ic}

I If
∑L

i=1 γiQi is a distribution, then γi ≥ 0 for all i .
I IfM1(X ) is the set of all probability distributions on X ,

M1(X ) ∩ Span {Qi ,1 ≤ i ≤ n} = ConvHull {Qi ,1 ≤ i ≤ n}
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JOINT IRREDUCIBILITY – INTERPRETATION

Assume:
I (P1, . . . ,PL) are jointly irreducible;
I P̃i = πT

i P, with πi (rows of the mixing matrix Π) linearly independent

Then:
κ∗(P̃k |(P̃i )i∈I) = κ∗(πk |(πi )i∈I),

and there is a one-to-one correspondance between the set of residues.
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RECOVERABILITY

Recall the general contamination model:

P̃i =
L∑

i=1

πijPj ⇐⇒ P̃ = ΠP

Call mixing weight matrix Π recoverable under either of the equivalent
conditions:

I Π−1 has strictly positive diagonal entries and nonpositive
off-diagonal entries

I For all `, κ∗(π`|{πj , j 6= `}) = κ` is uniquely attained for
decomposition

π` = (1− κ`)e` + κ`π
′
`, (*)

where π` is `-th row of Π and e = `-th canonical basis vector,
e` = (0, . . . ,0,1,0, . . . ,0)
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DECONTAMINATION UNDER THE RECOVERABILITY

ASSUMPTION

I Recoverability implies π` = (1− κ`)e` + κ`π
′
`, unique maximal

decomposition
I Irreducibility implies one-to-one correspondance, therefore

P̃` = (1− κ`)P` +
∑
j 6=`

ν`j P̃j ;

unique maximal decomposition.

I Conclusion: κ` can be estimated consistently by MMPE estimators

κ̂(
̂̃P`|{

̂̃P j , j 6= `})
I We estimate also consistently the sources P` (residues), and further
ν`j , Π−1 and finally Π
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WHEN DOES RECOVERABILITY HOLD?

Contaminated distributions

Sources (jointly irreducible)P1

P3P2
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WHEN DOES RECOVERABILITY HOLD?

Contaminated distributions

Common background noise

Sources (jointly irreducible)

P2

P1

P3
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CONSISTENT ESTIMATION OF RISK

From

P̃` = (1− κ`)P` +
∑
j 6=`

ν`j P̃j

we get, denoting R̃ij (f ) = P̃i (f (X ) 6= j)

R`(f ) =
R̃``(f )−

∑
j 6=` ν`j R̃`j

1− κ`
−→ R̂`(f ) =

̂̃R``(f )−
∑

j 6=` ν̂`j
̂̃R`j

1− κ̂`

Then it holds:

sup
f∈Fk(n)

∣∣∣R̂`(f )− R`(f )
∣∣∣→ 0 in probability,

as n = min(n1, . . . ,nL)→∞., for VC-classes Fk of dimension Vk ,
provided Vk(n) log n

n → 0
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DEMIXING WITHOUT RECOVERABILITY

I Goal: estimating sources up to permutation (demixing problem)
I Try to “reduce dimension”:

Contaminated distributions

Sources (jointly irreducible)P1

P2 P3

I Residues always belong to the boundary
I Need a test of whether the residues belong to the same “face”
I If test does not reject, apply algorithm recursively
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DEMIXING WITHOUT RECOVERABILITY

I Advantage: only need estimator κ̂ for two distributions (much simpler
to implement)

I Advantage: only need full column rank (weaker than recoverability)
to establish population consistency

I Disadvantage: need more iterations/retries, theoretical consistency
of estimation only established under the stronger assumption of

∀i Supp(Pi ) 6⊆
⋃
j 6=i

Supp(Pj )

I Extension: If support S of Π is known, and all columns of S are
unique, can recover the specific sources by support matching.
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CONCLUSIONS

Contributions:
I Nonparametric/distribution-free point of view
I 2-class case: characterization of irreducible solution and consistent

estimation
I Multiclass case:

I Consistent maximal mixture proportions estimation
I Consistent de-contamination under irreducibility + recoverability
I Consistent de-mixing (up to permutation) under support irreducibility +

full column rank
I Consistent de-contamination under the same conditions as the

previous point, if support of mixing weights known
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