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1. Problem setting

I Suppose we are given n objects that belong to one of
the two groups {0, 1}.

I The group membership of object i is further denoted
by yi but is not actually observed.

I Instead of that, we are given observations (ỹi)i=1,...,n,
for which we can suppose that the probability that ỹi is
equal to yi is known and equal to p0.



I Further, we are given m algorithms, (Aj)j=1,...,m that

produce classifications of the objects: Aj(i) = y j
i .

I These algorithms are ranked according to the
misclassification rate with respect to the observations
ỹi :

rank(Aj) < rank(Aj ′)⇔
n∑

i=1

1{y j
i 6=ỹi} <

n∑
i=1

1{y j′
i 6=ỹi}

.

I These ranks are further denoted by (r̃j)j=1,...,m.

I However, they do not correspond to the ranks
(rj)j=1,...,m that could have been obtained using the true

probabilities that the algorithms Aj produce a label y j
i

equal to yi .



I Denote by pj the probability that the classification
given by Aj is equal to the true class label.

I The general question is to know what is the influence of
p0 on the differences between (rj)j=1,...,m and (r̃j)j=1,...,m.

Specific questions could be:

I are we able to know that if p0 is small enough, the
ranking is (mostly) unchanged?

I are we able to propose a test that would say that, given
p0, which algorithms are not significantly different?



2. Related work

The following conclusions can be derived from Raj et al
(2011)

I the probability that Aj agrees with the observed class
label, ỹi , is, under independence assumption between
classifiers errors and labels errors,

tj = P(y j
i = ỹi)

= P(y j
i = ỹi ; ỹi = yi) + P(y j

i = ỹi ; ỹi 6= yi)

= P(y j
i = yi ; ỹi = yi) + P(y j

i 6= yi ; ỹi 6= yi)

= p0pj + (1− p0)(1− pj)

= (2p0 − 1)pj + 1− p0.



I Thus, if p0 > 0.5, then tj > tj ′ ⇔ pj > pj ′ meaning that
an algoritm has a better performance than another one
with respect to the observed labels if and only if it is
the case with respect to the true labels.

I tj can be estimated by t̃j = 1
n

∑n
i=1 1{y j

i =ỹi}.

I A test is derived for H0: “pj = pj ′” against H1

“pj 6= pj ′”.

I It is simply based on the binomial distribution variance

and the fact that, asymptotically,
t̃j−t̃j′

Var(t̃j )+Var(t̃j′ )
follows a normal distribution.

I p0 is not even needed to perform this test and can be
worse than pj .



I Question : comparing algorithms (Aj) by using the
values of (tj)j , can one compute the probability of
change of ranking, i.e. the probability that t̃j < t̃j ′
when pj > pj ′?

I This question is very close to the one addressed by
Lamiroy and Pierrot, where they used an approach
based on combinatorics to derive the probability of
change in ranking and validated their result by
simulations.



The Lam and Stork (2003) approach
Under the assumption of independence of the error of the
classifier and the error on the class label, Lam and Stork
expressed the ”true error rate” of the algorithm Aj as

P(yi 6= y j
i ) =

P(y j
i 6= ỹi)− P(y 6= ỹi)

1− 2P(y 6= ỹi)
.

They gave some bounds on this expression in a special case
of non independence.



Some directions of research

I The approach of Raj et al (2011) is based on the
independence of the error of the classifier and of the
error on the class label.

I However, this setting does not seem very realistic: it is
expected that classifiers are more often mistaken on the
objects that have error on class labels more often. This
setting can be formalized using the conditional
probabilities:

P(y j
i = yi |ỹi = yi) = pTj and P(y j

i = yi |ỹi 6= yi) = pFj

with pTj ≥ pj and pFj ≤ pj
(the independence case is pj = pFj = pTj ).



I Note also that

pj = pTj p0 + pFj (1− p0)

(which, in particular, implies that pTj = pj ⇔ pFj = pj).

I We have
tj = p0p

T
j + (1− p0)(1− pFj )

= pjp0+(1−pj)(1−p0)+ rjp0 + sj(1− p0)︸ ︷︷ ︸
divergence to the independence case

with pTj = pj + rj and pFj = pj − sj .



I Let us now suppose that Aj and Aj ′ compare such that
rank(Aj) ≤ rank(Aj ′), which is equivalent to pj ≥ pj ′ .

I Then, we would like to know when the ranks as given
by the observed labels are indicative of this relative
performance. Similarly as in Raj, we suppose that the
observed ranks are reasonable, meaning that p0 ≥ 0.5.
With this condition,

pjp0 + (1− pj)(1− p0) ≥ pj ′p0 + (1− pj ′)(1− p0)

and the ranks are preserved on the observed labels if
and only if

tj ≥ tj ′ ⇔ rjp0 + sj(1− p0) ≥ rj ′p0 + sj ′(1− p0)

⇔ rj − rj ′ ≥
1− p0
p0

(sj − sj ′)

or, equivalently, if and only if

pTj − pTj ′ ≥
1− p0
p0

(pFj − pFj ′ ).



Estimation
tj and tj ′ are not really observed. Only,

t̃j =
1

n

n∑
i=1

1{y j
i =ỹi}

can be observed. However, if the observations are i.i.d., nt̃j
follows a binomial distribution B(n, tj).



Some questions related to the Lamiroy-Pierrot approach :

I Other measures of dissimilarity than the
Kullback-Leibler divergence, such as total variation
distance?

I Extension to more than two algorithms ?
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